Missed TensorFlow Dev Summit? Check out the video playlist. Watch recordings

movie_rationales

  • Description:

The movie rationale dataset contains human annotated rationales for movie reviews.

Split Examples
'test' 199
'train' 1,600
'validation' 200
  • Features:
FeaturesDict({
    'evidences': Sequence(Text(shape=(), dtype=tf.string)),
    'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=2),
    'review': Text(shape=(), dtype=tf.string),
})
@unpublished{eraser2019,
    title = {ERASER: A Benchmark to Evaluate Rationalized NLP Models},
    author = {Jay DeYoung and Sarthak Jain and Nazneen Fatema Rajani and Eric Lehman and Caiming Xiong and Richard Socher and Byron C. Wallace}
}
@InProceedings{zaidan-eisner-piatko-2008:nips,
  author    =  {Omar F. Zaidan  and  Jason Eisner  and  Christine Piatko},
  title     =  {Machine Learning with Annotator Rationales to Reduce Annotation Cost},
  booktitle =  {Proceedings of the NIPS*2008 Workshop on Cost Sensitive Learning},
  month     =  {December},
  year      =  {2008}
}