Missed TensorFlow World? Check out the recap. Learn more

gigaword

Headline-generation on a corpus of article pairs from Gigaword consisting of around 4 million articles. Use the 'org_data' provided by https://github.com/microsoft/unilm/ which is identical to https://github.com/harvardnlp/sent-summary but with better format.

There are two features: - document: article. - summary: headline.

Features

FeaturesDict({
    'document': Text(shape=(), dtype=tf.string),
    'summary': Text(shape=(), dtype=tf.string),
})

Statistics

Split Examples
ALL 3,995,559
TRAIN 3,803,957
VALIDATION 189,651
TEST 1,951

Homepage

Supervised keys (for as_supervised=True)

(u'document', u'summary')

Citation

@article{graff2003english,
  title={English gigaword},
  author={Graff, David and Kong, Junbo and Chen, Ke and Maeda, Kazuaki},
  journal={Linguistic Data Consortium, Philadelphia},
  volume={4},
  number={1},
  pages={34},
  year={2003}
}

@article{Rush_2015,
   title={A Neural Attention Model for Abstractive Sentence Summarization},
   url={http://dx.doi.org/10.18653/v1/D15-1044},
   DOI={10.18653/v1/d15-1044},
   journal={Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing},
   publisher={Association for Computational Linguistics},
   author={Rush, Alexander M. and Chopra, Sumit and Weston, Jason},
   year={2015}
}