- Description:
So2Sat LCZ42 is a dataset consisting of co-registered synthetic aperture radar and multispectral optical image patches acquired by the Sentinel-1 and Sentinel-2 remote sensing satellites, and the corresponding local climate zones (LCZ) label. The dataset is distributed over 42 cities across different continents and cultural regions of the world.
The full dataset (all
) consists of 8 Sentinel-1 and 10 Sentinel-2 channels.
Alternatively, one can select the rgb
subset, which contains only the optical
frequency bands of Sentinel-2, rescaled and encoded as JPEG.
Dataset URL: http://doi.org/10.14459/2018MP1454690
License: http://creativecommons.org/licenses/by/4.0
Additional Documentation: Explore on Papers With Code
Homepage: http://doi.org/10.14459/2018MP1454690
Source code:
tfds.datasets.so2sat.Builder
Versions:
2.0.0
: New split API (https://tensorflow.org/datasets/splits)2.1.0
(default): Using updated optical channels calibration factor.
Download size:
Unknown size
Dataset size:
Unknown size
Auto-cached (documentation): Unknown
Splits:
Split | Examples |
---|
Figure (tfds.show_examples): Not supported.
Examples (tfds.as_dataframe): Missing.
Citation:
@misc{mediatum1483140,
author = {Zhu, Xiaoxiang and Hu, Jingliang and Qiu, Chunping and Shi, Yilei and Bagheri, Hossein and Kang, Jian and Li, Hao and Mou, Lichao and Zhang, Guicheng and Häberle, Matthias and Han, Shiyao and Hua, Yuansheng and Huang, Rong and Hughes, Lloyd and Sun, Yao and Schmitt, Michael and Wang, Yuanyuan },
title = {NEW: So2Sat LCZ42},
publisher = {Technical University of Munich},
url = {https://mediatum.ub.tum.de/1483140},
type = {Dataset},
year = {2019},
doi = {10.14459/2018mp1483140},
keywords = {local climate zones ; big data ; classification ; remote sensing ; deep learning ; data fusion ; synthetic aperture radar imagery ; optical imagery},
abstract = {So2Sat LCZ42 is a dataset consisting of corresponding synthetic aperture radar and multispectral optical image data acquired by the Sentinel-1 and Sentinel-2 remote sensing satellites, and a corresponding local climate zones (LCZ) label. The dataset is distributed over 42 cities across different continents and cultural regions of the world, and comes with a split into fully independent, non-overlapping training, validation, and test sets.},
language = {en},
}
so2sat/rgb (default config)
Config description: Sentinel-2 RGB channels
Feature structure:
FeaturesDict({
'image': Image(shape=(32, 32, 3), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=17),
'sample_id': int64,
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
image | Image | (32, 32, 3) | uint8 | |
label | ClassLabel | int64 | ||
sample_id | Tensor | int64 |
- Supervised keys (See
as_supervised
doc):('image', 'label')
so2sat/all
Config description: 8 Sentinel-1 and 10 Sentinel-2 channels
Feature structure:
FeaturesDict({
'label': ClassLabel(shape=(), dtype=int64, num_classes=17),
'sample_id': int64,
'sentinel1': Tensor(shape=(32, 32, 8), dtype=float32),
'sentinel2': Tensor(shape=(32, 32, 10), dtype=float32),
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
label | ClassLabel | int64 | ||
sample_id | Tensor | int64 | ||
sentinel1 | Tensor | (32, 32, 8) | float32 | |
sentinel2 | Tensor | (32, 32, 10) | float32 |
- Supervised keys (See
as_supervised
doc):None