cifar10_h

  • Description:

A re-labeled version of CIFAR-10's test set with soft-labels coming from real human annotators. For every pair (image, label) in the original CIFAR-10 test set, it provides several additional labels given by real human annotators as well as the average soft-label. The training set is identical to the one of the original dataset.

Split Examples
'test' 10,000
'train' 50,000
  • Feature structure:
FeaturesDict({
    'annotator_ids': Sequence(Scalar(shape=(), dtype=int32)),
    'human_labels': Sequence(ClassLabel(shape=(), dtype=int64, num_classes=10)),
    'id': Text(shape=(), dtype=string),
    'image': Image(shape=(32, 32, 3), dtype=uint8),
    'label': ClassLabel(shape=(), dtype=int64, num_classes=10),
    'reaction_times': Sequence(Scalar(shape=(), dtype=float32)),
    'soft_label': Tensor(shape=(10,), dtype=float32),
    'trial_indices': Sequence(Scalar(shape=(), dtype=int32)),
})
  • Feature documentation:
Feature Class Shape Dtype Description
FeaturesDict
annotator_ids Sequence(Scalar) (None,) int32
human_labels Sequence(ClassLabel) (None,) int64
id Text string
image Image (32, 32, 3) uint8
label ClassLabel int64
reaction_times Sequence(Scalar) (None,) float32
soft_label Tensor (10,) float32
trial_indices Sequence(Scalar) (None,) int32

Visualization

  • Citation:
@inproceedings{wei2022learning,
  title={Human uncertainty makes classification more robust},
  author={Joshua C. Peterson and Ruairidh M. Battleday and Thomas L. Griffiths
  and Olga Russakovsky},
  booktitle={IEEE International Conference on Computer Vision and Pattern
  Recognition (CVPR)},
  year={2019}
}