- Description:
xArm picking and placing objects with distractors
Homepage: https://owmcorl.github.io
Source code:
tfds.robotics.rtx.UcsdPickAndPlaceDatasetConvertedExternallyToRlds
Versions:
0.1.0
(default): Initial release.
Download size:
Unknown size
Dataset size:
3.53 GiB
Auto-cached (documentation): No
Splits:
Split | Examples |
---|---|
'train' |
1,355 |
- Feature structure:
FeaturesDict({
'episode_metadata': FeaturesDict({
'disclaimer': Text(shape=(), dtype=string),
'file_path': Text(shape=(), dtype=string),
'n_transitions': Scalar(shape=(), dtype=int32, description=Number of transitions in the episode.),
'success': Scalar(shape=(), dtype=bool, description=True if the last state of an episode is a success state, False otherwise.),
'success_labeled_by': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(4,), dtype=float32, description=Robot action, consists of [3x gripper velocities,1x gripper open/close torque].),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'image': Image(shape=(224, 224, 3), dtype=uint8, description=Camera RGB observation.),
'state': Tensor(shape=(7,), dtype=float32, description=Robot state, consists of [3x gripper position,3x gripper orientation, 1x finger distance].),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
episode_metadata | FeaturesDict | |||
episode_metadata/disclaimer | Text | string | Disclaimer about the particular episode. | |
episode_metadata/file_path | Text | string | Path to the original data file. | |
episode_metadata/n_transitions | Scalar | int32 | Number of transitions in the episode. | |
episode_metadata/success | Scalar | bool | True if the last state of an episode is a success state, False otherwise. | |
episode_metadata/success_labeled_by | Text | string | Who labeled success (and thereby reward) of the episode. Can be one of: [human, classifier]. | |
steps | Dataset | |||
steps/action | Tensor | (4,) | float32 | Robot action, consists of [3x gripper velocities,1x gripper open/close torque]. |
steps/discount | Scalar | float32 | Discount if provided, default to 1. | |
steps/is_first | Tensor | bool | ||
steps/is_last | Tensor | bool | ||
steps/is_terminal | Tensor | bool | ||
steps/language_embedding | Tensor | (512,) | float32 | Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5 |
steps/language_instruction | Text | string | Language Instruction. | |
steps/observation | FeaturesDict | |||
steps/observation/image | Image | (224, 224, 3) | uint8 | Camera RGB observation. |
steps/observation/state | Tensor | (7,) | float32 | Robot state, consists of [3x gripper position,3x gripper orientation, 1x finger distance]. |
steps/reward | Scalar | float32 | Reward if provided, 1 on final step for demos. |
Supervised keys (See
as_supervised
doc):None
Figure (tfds.show_examples): Not supported.
Examples (tfds.as_dataframe):
- Citation:
@preprint{Feng2023Finetuning,
title={Finetuning Offline World Models in the Real World},
author={Yunhai Feng, Nicklas Hansen, Ziyan Xiong, Chandramouli Rajagopalan, Xiaolong Wang},
year={2023}
}