TF 2.0 is out! Get hands-on practice at TF World, Oct 28-31. Use code TF20 for 20% off select passes. Register now

oxford_iiit_pet

The Oxford-IIIT pet dataset is a 37 category pet image dataset with roughly 200 images for each class. The images have large variations in scale, pose and lighting. All images have an associated ground truth annotation of breed.

Features

FeaturesDict({
    'file_name': Text(shape=(), dtype=tf.string),
    'image': Image(shape=(None, None, 3), dtype=tf.uint8),
    'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=37),
    'segmentation_mask': Image(shape=(None, None, 1), dtype=tf.uint8),
})

Statistics

Split Examples
ALL 7,349
TRAIN 3,680
TEST 3,669

Urls

Supervised keys (for as_supervised=True)

(u'image', u'label')

Citation

@InProceedings{parkhi12a,
  author       = "Parkhi, O. M. and Vedaldi, A. and Zisserman, A. and Jawahar, C.~V.",
  title        = "Cats and Dogs",
  booktitle    = "IEEE Conference on Computer Vision and Pattern Recognition",
  year         = "2012",
}