d4rl_mujoco_halfcheetah

  • 説明

D4RLは、オフライン強化学習のオープンソースベンチマークです。アルゴリズムのトレーニングとベンチマークのための標準化された環境とデータセットを提供します。

@misc{fu2020d4rl,
    title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},
    author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},
    year={2020},
    eprint={2004.07219},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

d4rl_mujoco_halfcheetah / v0-エキスパート(デフォルト設定)

  • ダウンロードサイズ83.44 MiB

  • データセットサイズ98.43 MiB

  • オートキャッシュされたドキュメント):はい

  • スプリット

スプリット
'train' 1,002
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_halfcheetah / v0-中

  • ダウンロードサイズ82.92 MiB

  • データセットサイズ98.43 MiB

  • オートキャッシュされたドキュメント):はい

  • スプリット

スプリット
'train' 1,002
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_halfcheetah / v0-medium-expert

  • ダウンロードサイズ166.36 MiB

  • データセットのサイズ196.86 MiB

  • オートキャッシュされたドキュメント):時のみshuffle_files=False (電車)

  • スプリット

スプリット
'train' 2,004
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_halfcheetah / v0-混合

  • ダウンロードサイズ8.60 MiB

  • データセットサイズ9.94 MiB

  • オートキャッシュされたドキュメント):はい

  • スプリット

スプリット
'train' 101
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_halfcheetah / v0-ランダム

  • ダウンロードサイズ84.79 MiB

  • データセットサイズ98.43 MiB

  • オートキャッシュされたドキュメント):はい

  • スプリット

スプリット
'train' 1,002
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_halfcheetah / v1-expert

  • ダウンロードサイズ146.94 MiB

  • データセットのサイズ451.71 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 1,000
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 17), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_halfcheetah / v1-medium

  • ダウンロードサイズ146.65 MiB

  • データセットのサイズ451.71 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 1,000
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 17), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_halfcheetah / v1-medium-expert

  • ダウンロードサイズ293.00 MiB

  • データセットのサイズ342.02 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 2,000
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_halfcheetah / v1-中程度の再生

  • ダウンロードサイズ57.68 MiB

  • データセットサイズ34.55 MiB

  • オートキャッシュされたドキュメント):はい

  • スプリット

スプリット
'train' 202
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float64),
        'discount': tf.float64,
        'infos': FeaturesDict({
            'action_log_probs': tf.float64,
            'qpos': Tensor(shape=(9,), dtype=tf.float64),
            'qvel': Tensor(shape=(9,), dtype=tf.float64),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float64),
        'reward': tf.float64,
    }),
})

d4rl_mujoco_halfcheetah / v1-フルリプレイ

  • ダウンロードサイズ285.01 MiB

  • データセットのサイズ171.05 MiB

  • オートキャッシュされたドキュメント):時のみshuffle_files=False (電車)

  • スプリット

スプリット
'train' 1,000
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float64),
        'discount': tf.float64,
        'infos': FeaturesDict({
            'action_log_probs': tf.float64,
            'qpos': Tensor(shape=(9,), dtype=tf.float64),
            'qvel': Tensor(shape=(9,), dtype=tf.float64),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float64),
        'reward': tf.float64,
    }),
})

d4rl_mujoco_halfcheetah / v1-ランダ​​ム

  • ダウンロードサイズ145.19 MiB

  • データセットのサイズ171.01 MiB

  • オートキャッシュされたドキュメント):時のみshuffle_files=False (電車)

  • スプリット

スプリット
'train' 1,000
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_halfcheetah / v2-expert

  • ダウンロードサイズ209.48 MiB

  • データセットのサイズ451.71 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 1,000
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 17), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_halfcheetah / v2-フルリプレイ

  • ダウンロードサイズ285.01 MiB

  • データセットのサイズ171.05 MiB

  • オートキャッシュされたドキュメント):時のみshuffle_files=False (電車)

  • スプリット

スプリット
'train' 1,000
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float64),
        'discount': tf.float64,
        'infos': FeaturesDict({
            'action_log_probs': tf.float64,
            'qpos': Tensor(shape=(9,), dtype=tf.float64),
            'qvel': Tensor(shape=(9,), dtype=tf.float64),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float64),
        'reward': tf.float64,
    }),
})

d4rl_mujoco_halfcheetah / v2-medium

  • ダウンロードサイズ209.48 MiB

  • データセットのサイズ451.71 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 1,000
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 17), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_halfcheetah / v2-medium-expert

  • ダウンロードサイズ418.37 MiB

  • データセットのサイズ342.02 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 2,000
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_halfcheetah / v2-中程度の再生

  • ダウンロードサイズ57.68 MiB

  • データセットサイズ34.55 MiB

  • オートキャッシュされたドキュメント):はい

  • スプリット

スプリット
'train' 202
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float64),
        'discount': tf.float64,
        'infos': FeaturesDict({
            'action_log_probs': tf.float64,
            'qpos': Tensor(shape=(9,), dtype=tf.float64),
            'qvel': Tensor(shape=(9,), dtype=tf.float64),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float64),
        'reward': tf.float64,
    }),
})

d4rl_mujoco_halfcheetah / v2-ランダム

  • ダウンロードサイズ208.68 MiB

  • データセットのサイズ171.01 MiB

  • オートキャッシュされたドキュメント):時のみshuffle_files=False (電車)

  • スプリット

スプリット
'train' 1,000
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})