d4rl_mujoco_walker2d

  • 説明

D4RLは、オフライン強化学習のオープンソースベンチマークです。アルゴリズムのトレーニングとベンチマークのための標準化された環境とデータセットを提供します。

@misc{fu2020d4rl,
    title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},
    author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},
    year={2020},
    eprint={2004.07219},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

d4rl_mujoco_walker2d / v0-エキスパート(デフォルト設定)

  • ダウンロードサイズ78.41 MiB

  • データセットサイズ98.64 MiB

  • オートキャッシュされたドキュメント):はい

  • スプリット

スプリット
'train' 1,628
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d / v0-中

  • ダウンロードサイズ80.83 MiB

  • データセットサイズ99.72 MiB

  • オートキャッシュされたドキュメント):はい

  • スプリット

スプリット
'train' 5,315
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d / v0-中程度の専門家

  • ダウンロードサイズ159.24 MiB

  • データセットのサイズ198.36 MiB

  • オートキャッシュされたドキュメント):時のみshuffle_files=False (電車)

  • スプリット

スプリット
'train' 6,943
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d / v0-混合

  • ダウンロードサイズ8.42 MiB

  • データセットサイズ10.06 MiB

  • オートキャッシュされたドキュメント):はい

  • スプリット

スプリット
'train' 501
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d / v0-ランダム

  • ダウンロードサイズ78.41 MiB

  • データセットのサイズ112.04 MiB

  • オートキャッシュされたドキュメント):はい

  • スプリット

スプリット
'train' 50,988
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d / v1-expert

  • ダウンロードサイズ143.06 MiB

  • データセットのサイズ452.55 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 1,003
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 17), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d / v1-中

  • ダウンロードサイズ144.23 MiB

  • データセットのサイズ509.97 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 1,207
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 17), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d / v1-中程度の専門家

  • ダウンロードサイズ286.69 MiB

  • データセットのサイズ342.18 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 2,209
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d / v1-中程度の再生

  • ダウンロードサイズ84.37 MiB

  • データセットサイズ52.05 MiB

  • オートキャッシュされたドキュメント):はい

  • スプリット

スプリット
'train' 1,093
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float64),
        'discount': tf.float64,
        'infos': FeaturesDict({
            'action_log_probs': tf.float64,
            'qpos': Tensor(shape=(9,), dtype=tf.float64),
            'qvel': Tensor(shape=(9,), dtype=tf.float64),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float64),
        'reward': tf.float64,
    }),
})

d4rl_mujoco_walker2d / v1-フルリプレイ

  • ダウンロードサイズ278.95 MiB

  • データセットのサイズ171.49 MiB

  • オートキャッシュされたドキュメント):時のみshuffle_files=False (電車)

  • スプリット

スプリット
'train' 1,888
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float64),
        'discount': tf.float64,
        'infos': FeaturesDict({
            'action_log_probs': tf.float64,
            'qpos': Tensor(shape=(9,), dtype=tf.float64),
            'qvel': Tensor(shape=(9,), dtype=tf.float64),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float64),
        'reward': tf.float64,
    }),
})

d4rl_mujoco_walker2d / v1-ランダ​​ム

  • ダウンロードサイズ132.36 MiB

  • データセットのサイズ192.06 MiB

  • オートキャッシュされたドキュメント):時のみshuffle_files=False (電車)

  • スプリット

スプリット
'train' 48,790
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d / v2-expert

  • ダウンロードサイズ205.56 MiB

  • データセットのサイズ451.99 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 1,001
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 17), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d / v2-フルリプレイ

  • ダウンロードサイズ278.95 MiB

  • データセットのサイズ171.49 MiB

  • オートキャッシュされたドキュメント):時のみshuffle_files=False (電車)

  • スプリット

スプリット
'train' 1,888
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float64),
        'discount': tf.float64,
        'infos': FeaturesDict({
            'action_log_probs': tf.float64,
            'qpos': Tensor(shape=(9,), dtype=tf.float64),
            'qvel': Tensor(shape=(9,), dtype=tf.float64),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float64),
        'reward': tf.float64,
    }),
})

d4rl_mujoco_walker2d / v2-medium

  • ダウンロードサイズ206.94 MiB

  • データセットのサイズ505.47 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 1,191
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 17), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d / v2-中程度の専門家

  • ダウンロードサイズ411.91 MiB

  • データセットのサイズ342.17 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 2,191
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d / v2-中程度の再生

  • ダウンロードサイズ84.37 MiB

  • データセットサイズ52.05 MiB

  • オートキャッシュされたドキュメント):はい

  • スプリット

スプリット
'train' 1,093
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float64),
        'discount': tf.float64,
        'infos': FeaturesDict({
            'action_log_probs': tf.float64,
            'qpos': Tensor(shape=(9,), dtype=tf.float64),
            'qvel': Tensor(shape=(9,), dtype=tf.float64),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float64),
        'reward': tf.float64,
    }),
})

d4rl_mujoco_walker2d / v2-ランダム

  • ダウンロードサイズ195.28 MiB

  • データセットのサイズ192.11 MiB

  • オートキャッシュされたドキュメント):時のみshuffle_files=False (電車)

  • スプリット

スプリット
'train' 48,908
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})