Stay organized with collections Save and categorize content based on your preferences.

View source on GitHub

RNN cell composed sequentially of multiple simple cells.

Inherits From: RNNCell


num_units = [128, 64]
cells = [BasicLSTMCell(num_units=n) for n in num_units]
stacked_rnn_cell = MultiRNNCell(cells)

cells list of RNNCells that will be composed in this order.
state_is_tuple If True, accepted and returned states are n-tuples, where n = len(cells). If False, the states are all concatenated along the column axis. This latter behavior will soon be deprecated.

ValueError if cells is empty (not allowed), or at least one of the cells returns a state tuple but the flag state_is_tuple is False.


output_size Integer or TensorShape: size of outputs produced by this cell.

state_size size(s) of state(s) used by this cell.

It can be represented by an Integer, a TensorShape or a tuple of Integers or TensorShapes.



View source


View source

Return zero-filled state tensor(s).

batch_size int, float, or unit Tensor representing the batch size.
dtype the data type to use for the state.

If state_size is an int or TensorShape, then the return value is a N-D tensor of shape [batch_size, state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is a nested list or tuple (of the same structure) of 2-D tensors with the shapes [batch_size, s] for each s in state_size.