tf.saved_model.SaveOptions

View source on GitHub

Options for saving to SavedModel.

tf.saved_model.SaveOptions(
    namespace_whitelist=None, save_debug_info=False, function_aliases=None
)

This function may be used in the options argument in functions that save a SavedModel (tf.saved_model.save, tf.keras.models.save_model).

Args:

  • namespace_whitelist: List of strings containing op namespaces to whitelist when saving a model. Saving an object that uses namespaced ops must explicitly add all namespaces to the whitelist. The namespaced ops must be registered into the framework when loading the SavedModel.
  • save_debug_info: Boolean indicating whether debug information is saved. If True, then a debug/saved_model_debug_info.pb file will be written with the contents of a GraphDebugInfo binary protocol buffer containing stack trace information for all ops and functions that are saved.
  • function_aliases: Python dict. Mapping from string to object returned by @tf.function. A single tf.function can generate many ConcreteFunctions. If a downstream tool wants to refer to all concrete functions generated by a single tf.function you can use the function_aliases argument to store a map from the alias name to all concrete function names. E.g.
class MyModel:
@tf.function
def func():
  ...

@tf.function
def serve():
  ...
  func()

model = MyModel()
signatures = {
    'serving_default': model.serve.get_concrete_function(),
}
options = tf.saved_model.SaveOptions(function_aliases={
    'my_func': func,
})
tf.saved_model.save(model, export_dir, signatures, options)

Class Variables

  • function_aliases
  • namespace_whitelist
  • save_debug_info