Missed TensorFlow Dev Summit? Check out the video playlist. Watch recordings

tf.keras.layers.concatenate

TensorFlow 1 version View source on GitHub

Functional interface to the Concatenate layer.

tf.keras.layers.concatenate(
    inputs, axis=-1, **kwargs
)

Used in the notebooks

Used in the guide Used in the tutorials
x = np.arange(20).reshape(2, 2, 5) 
print(x) 
[[[ 0  1  2  3  4] 
  [ 5  6  7  8  9]] 
 [[10 11 12 13 14] 
  [15 16 17 18 19]]] 
y = np.arange(20, 30).reshape(2, 1, 5) 
print(y) 
[[[20 21 22 23 24]] 
 [[25 26 27 28 29]]] 
tf.keras.layers.concatenate([x, y], 
                            axis=1) 
<tf.Tensor: shape=(2, 3, 5), dtype=int64, numpy= 
array([[[ 0,  1,  2,  3,  4], 
      [ 5,  6,  7,  8,  9], 
      [20, 21, 22, 23, 24]], 
     [[10, 11, 12, 13, 14], 
      [15, 16, 17, 18, 19], 
      [25, 26, 27, 28, 29]]])> 

Arguments:

  • inputs: A list of input tensors (at least 2).
  • axis: Concatenation axis.
  • **kwargs: Standard layer keyword arguments.

Returns:

A tensor, the concatenation of the inputs alongside axis axis.