Help protect the Great Barrier Reef with TensorFlow on Kaggle

tf.raw_ops.CompareAndBitpack

Compare values of `input` to `threshold` and pack resulting bits into a `uint8`.

Each comparison returns a boolean `true` (if `input_value > threshold`) or and `false` otherwise.

This operation is useful for Locality-Sensitive-Hashing (LSH) and other algorithms that use hashing approximations of cosine and `L2` distances; codes can be generated from an input via:

``````codebook_size = 50
codebook_bits = codebook_size * 32
codebook = tf.get_variable('codebook', [x.shape[-1].value, codebook_bits],
dtype=x.dtype,
initializer=tf.orthogonal_initializer())
codes = compare_and_threshold(tf.matmul(x, codebook), threshold=0.)
codes = tf.bitcast(codes, tf.int32)  # go from uint8 to int32
# now codes has shape x.shape[:-1] + [codebook_size]
``````

Given an `input` shaped `[s0, s1, ..., s_n]`, the output is a `uint8` tensor shaped `[s0, s1, ..., s_n / 8]`.

`input` A `Tensor`. Must be one of the following types: `bool`, `half`, `float32`, `float64`, `int8`, `int16`, `int32`, `int64`. Values to compare against `threshold` and bitpack.
`threshold` A `Tensor`. Must have the same type as `input`. Threshold to compare against.
`name` A name for the operation (optional).

A `Tensor` of type `uint8`.

[{ "type": "thumb-down", "id": "missingTheInformationINeed", "label":"Missing the information I need" },{ "type": "thumb-down", "id": "tooComplicatedTooManySteps", "label":"Too complicated / too many steps" },{ "type": "thumb-down", "id": "outOfDate", "label":"Out of date" },{ "type": "thumb-down", "id": "samplesCodeIssue", "label":"Samples / code issue" },{ "type": "thumb-down", "id": "otherDown", "label":"Other" }]
[{ "type": "thumb-up", "id": "easyToUnderstand", "label":"Easy to understand" },{ "type": "thumb-up", "id": "solvedMyProblem", "label":"Solved my problem" },{ "type": "thumb-up", "id": "otherUp", "label":"Other" }]