kddcup99

  • Description:

Il s'agit de l'ensemble de données utilisé pour le troisième concours international d'outils de découverte des connaissances et d'exploration de données, qui s'est tenu conjointement avec KDD-99, la cinquième conférence internationale sur la découverte des connaissances et l'exploration de données. La tâche du concours consistait à construire un détecteur d'intrusion réseau, un modèle prédictif capable de faire la distinction entre les « mauvaises » connexions, appelées intrusions ou attaques, et les « bonnes » connexions normales. Cette base de données contient un ensemble standard de données à auditer, qui comprend une grande variété d'intrusions simulées dans un environnement de réseau militaire.

Diviser Exemples
'test' 311.029
'train' 4 898 431
  • Caractéristiques:
FeaturesDict({
    'count': tf.int32,
    'diff_srv_rate': tf.float32,
    'dst_bytes': tf.int32,
    'dst_host_count': tf.int32,
    'dst_host_diff_srv_rate': tf.float32,
    'dst_host_rerror_rate': tf.float32,
    'dst_host_same_src_port_rate': tf.float32,
    'dst_host_same_srv_rate': tf.float32,
    'dst_host_serror_rate': tf.float32,
    'dst_host_srv_count': tf.int32,
    'dst_host_srv_diff_host_rate': tf.float32,
    'dst_host_srv_rerror_rate': tf.float32,
    'dst_host_srv_serror_rate': tf.float32,
    'duration': tf.int32,
    'flag': ClassLabel(shape=(), dtype=tf.int64, num_classes=11),
    'hot': tf.int32,
    'is_guest_login': tf.bool,
    'is_hot_login': tf.bool,
    'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=40),
    'land': tf.bool,
    'logged_in': tf.bool,
    'num_access_files': tf.int32,
    'num_compromised': tf.int32,
    'num_failed_logins': tf.int32,
    'num_file_creations': tf.int32,
    'num_outbound_cmds': tf.int32,
    'num_root': tf.int32,
    'num_shells': tf.int32,
    'protocol_type': ClassLabel(shape=(), dtype=tf.int64, num_classes=3),
    'rerror_rate': tf.float32,
    'root_shell': tf.bool,
    'same_srv_rate': tf.float32,
    'serror_rate': tf.float32,
    'service': ClassLabel(shape=(), dtype=tf.int64, num_classes=71),
    'src_bytes': tf.int32,
    'srv_count': tf.int32,
    'srv_diff_host_rate': tf.float32,
    'srv_rerror_rate': tf.float32,
    'srv_serror_rate': tf.float32,
    'su_attempted': tf.int32,
    'urgent': tf.int32,
    'wrong_fragment': tf.int32,
})
  • citation:
@misc{Dua:2019 ,
  author = "Dua, Dheeru and Graff, Casey",
  year = 2017,
  title = "{UCI} Machine Learning Repository",
  url = "http://archive.ics.uci.edu/ml",
  institution = "University of California, Irvine, School of Information and
Computer Sciences"
}