impres

Références:

présupposition_all_n_presupposition

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:imppres/presupposition_all_n_presupposition')
  • Descriptif :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licence : Creative Commons Attribution-NonCommercial 4.0 International Public License
  • Version : 1.1.0
  • Fractionnements :
Diviser Exemples
'all_n_presupposition' 1900
  • Caractéristiques :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger1": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger2": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "presupposition": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "UID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "pairID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "paradigmID": {
        "dtype": "int16",
        "id": null,
        "_type": "Value"
    }
}

présupposition_les deux_présupposition

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:imppres/presupposition_both_presupposition')
  • Descriptif :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licence : Creative Commons Attribution-NonCommercial 4.0 International Public License
  • Version : 1.1.0
  • Fractionnements :
Diviser Exemples
'both_presupposition' 1900
  • Caractéristiques :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger1": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger2": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "presupposition": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "UID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "pairID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "paradigmID": {
        "dtype": "int16",
        "id": null,
        "_type": "Value"
    }
}

présupposition_change_of_state

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:imppres/presupposition_change_of_state')
  • Descriptif :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licence : Creative Commons Attribution-NonCommercial 4.0 International Public License
  • Version : 1.1.0
  • Fractionnements :
Diviser Exemples
'change_of_state' 1900
  • Caractéristiques :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger1": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger2": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "presupposition": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "UID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "pairID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "paradigmID": {
        "dtype": "int16",
        "id": null,
        "_type": "Value"
    }
}

présupposition_fente_existence

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:imppres/presupposition_cleft_existence')
  • Descriptif :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licence : Creative Commons Attribution-NonCommercial 4.0 International Public License
  • Version : 1.1.0
  • Fractionnements :
Diviser Exemples
'cleft_existence' 1900
  • Caractéristiques :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger1": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger2": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "presupposition": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "UID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "pairID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "paradigmID": {
        "dtype": "int16",
        "id": null,
        "_type": "Value"
    }
}

présupposition_fente_unicité

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:imppres/presupposition_cleft_uniqueness')
  • Descriptif :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licence : Creative Commons Attribution-NonCommercial 4.0 International Public License
  • Version : 1.1.0
  • Fractionnements :
Diviser Exemples
'cleft_uniqueness' 1900
  • Caractéristiques :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger1": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger2": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "presupposition": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "UID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "pairID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "paradigmID": {
        "dtype": "int16",
        "id": null,
        "_type": "Value"
    }
}

présupposition_uniquement_présupposition

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:imppres/presupposition_only_presupposition')
  • Descriptif :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licence : Creative Commons Attribution-NonCommercial 4.0 International Public License
  • Version : 1.1.0
  • Fractionnements :
Diviser Exemples
'only_presupposition' 1900
  • Caractéristiques :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger1": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger2": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "presupposition": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "UID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "pairID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "paradigmID": {
        "dtype": "int16",
        "id": null,
        "_type": "Value"
    }
}

présupposition_possessed_definites_existence

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:imppres/presupposition_possessed_definites_existence')
  • Descriptif :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licence : Creative Commons Attribution-NonCommercial 4.0 International Public License
  • Version : 1.1.0
  • Fractionnements :
Diviser Exemples
'possessed_definites_existence' 1900
  • Caractéristiques :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger1": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger2": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "presupposition": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "UID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "pairID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "paradigmID": {
        "dtype": "int16",
        "id": null,
        "_type": "Value"
    }
}

présupposition_possessed_definites_uniqueness

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:imppres/presupposition_possessed_definites_uniqueness')
  • Descriptif :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licence : Creative Commons Attribution-NonCommercial 4.0 International Public License
  • Version : 1.1.0
  • Fractionnements :
Diviser Exemples
'possessed_definites_uniqueness' 1900
  • Caractéristiques :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger1": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger2": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "presupposition": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "UID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "pairID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "paradigmID": {
        "dtype": "int16",
        "id": null,
        "_type": "Value"
    }
}

présupposition_question_présupposition

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:imppres/presupposition_question_presupposition')
  • Descriptif :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licence : Creative Commons Attribution-NonCommercial 4.0 International Public License
  • Version : 1.1.0
  • Fractionnements :
Diviser Exemples
'question_presupposition' 1900
  • Caractéristiques :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger1": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger2": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "presupposition": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "UID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "pairID": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "paradigmID": {
        "dtype": "int16",
        "id": null,
        "_type": "Value"
    }
}

implicature_connectives

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:imppres/implicature_connectives')
  • Descriptif :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licence : Creative Commons Attribution-NonCommercial 4.0 International Public License
  • Version : 1.1.0
  • Fractionnements :
Diviser Exemples
'connectives' 1200
  • Caractéristiques :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label_log": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "gold_label_prag": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "spec_relation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "item_type": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lexemes": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

implicature_gradable_adjectif

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:imppres/implicature_gradable_adjective')
  • Descriptif :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licence : Creative Commons Attribution-NonCommercial 4.0 International Public License
  • Version : 1.1.0
  • Fractionnements :
Diviser Exemples
'gradable_adjective' 1200
  • Caractéristiques :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label_log": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "gold_label_prag": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "spec_relation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "item_type": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lexemes": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

implicature_gradable_verb

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:imppres/implicature_gradable_verb')
  • Descriptif :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licence : Creative Commons Attribution-NonCommercial 4.0 International Public License
  • Version : 1.1.0
  • Fractionnements :
Diviser Exemples
'gradable_verb' 1200
  • Caractéristiques :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label_log": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "gold_label_prag": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "spec_relation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "item_type": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lexemes": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

implicature_modals

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:imppres/implicature_modals')
  • Descriptif :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licence : Creative Commons Attribution-NonCommercial 4.0 International Public License
  • Version : 1.1.0
  • Fractionnements :
Diviser Exemples
'modals' 1200
  • Caractéristiques :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label_log": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "gold_label_prag": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "spec_relation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "item_type": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lexemes": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

implicature_numerals_10_100

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:imppres/implicature_numerals_10_100')
  • Descriptif :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licence : Creative Commons Attribution-NonCommercial 4.0 International Public License
  • Version : 1.1.0
  • Fractionnements :
Diviser Exemples
'numerals_10_100' 1200
  • Caractéristiques :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label_log": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "gold_label_prag": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "spec_relation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "item_type": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lexemes": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

implicature_numerals_2_3

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:imppres/implicature_numerals_2_3')
  • Descriptif :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licence : Creative Commons Attribution-NonCommercial 4.0 International Public License
  • Version : 1.1.0
  • Fractionnements :
Diviser Exemples
'numerals_2_3' 1200
  • Caractéristiques :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label_log": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "gold_label_prag": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "spec_relation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "item_type": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lexemes": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

implicature_quantifiers

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:imppres/implicature_quantifiers')
  • Descriptif :
Over >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. IMPPRES is an NLI dataset following the format of SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and XNLI (Conneau et al., 2018), which was created to evaluate how well trained NLI models recognize several classes of presuppositions and scalar implicatures.
  • Licence : Creative Commons Attribution-NonCommercial 4.0 International Public License
  • Version : 1.1.0
  • Fractionnements :
Diviser Exemples
'quantifiers' 1200
  • Caractéristiques :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "gold_label_log": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "gold_label_prag": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "spec_relation": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "item_type": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "trigger": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "lexemes": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}