jugement_suisse_prediction

Références:

de

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:swiss_judgment_prediction/de')
  • Descriptif :
Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with
the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task.  
We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case,  
to promote robustness and fairness studies on the critical area of legal NLP.
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Fractionnements :
Diviser Exemples
'test' 9725
'train' 35458
'validation' 4705
  • Caractéristiques :
{
    "id": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "year": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "text": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "label": {
        "num_classes": 2,
        "names": [
            "dismissal",
            "approval"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "language": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "region": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "canton": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "legal area": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

en

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:swiss_judgment_prediction/fr')
  • Descriptif :
Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with
the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task.  
We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case,  
to promote robustness and fairness studies on the critical area of legal NLP.
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Fractionnements :
Diviser Exemples
'test' 6820
'train' 21179
'validation' 3095
  • Caractéristiques :
{
    "id": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "year": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "text": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "label": {
        "num_classes": 2,
        "names": [
            "dismissal",
            "approval"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "language": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "region": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "canton": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "legal area": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

ce

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:swiss_judgment_prediction/it')
  • Descriptif :
Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with
the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task.  
We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case,  
to promote robustness and fairness studies on the critical area of legal NLP.
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Fractionnements :
Diviser Exemples
'test' 812
'train' 3072
'validation' 408
  • Caractéristiques :
{
    "id": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "year": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "text": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "label": {
        "num_classes": 2,
        "names": [
            "dismissal",
            "approval"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "language": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "region": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "canton": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "legal area": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

toutes les langues

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:swiss_judgment_prediction/all_languages')
  • Descriptif :
Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with
the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task.  
We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case,  
to promote robustness and fairness studies on the critical area of legal NLP.
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Fractionnements :
Diviser Exemples
'test' 17357
'train' 59709
'validation' 8208
  • Caractéristiques :
{
    "id": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "year": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "text": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "label": {
        "num_classes": 2,
        "names": [
            "dismissal",
            "approval"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    },
    "language": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "region": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "canton": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "legal area": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}