xglue

Références:

ner

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:xglue/ner')
  • Descriptif :
XGLUE is a new benchmark dataset to evaluate the performance of cross-lingual pre-trained
models with respect to cross-lingual natural language understanding and generation.
The benchmark is composed of the following 11 tasks:
- NER
- POS Tagging (POS)
- News Classification (NC)
- MLQA
- XNLI
- PAWS-X
- Query-Ad Matching (QADSM)
- Web Page Ranking (WPR)
- QA Matching (QAM)
- Question Generation (QG)
- News Title Generation (NTG)

For more information, please take a look at https://microsoft.github.io/XGLUE/.
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Fractionnements :
Diviser Exemples
'test.de' 3007
'test.en' 3454
'test.es' 1523
'test.nl' 5202
'train' 14042
'validation.de' 2874
'validation.en' 3252
'validation.es' 1923
'validation.nl' 2895
  • Caractéristiques :
{
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "ner": {
        "feature": {
            "num_classes": 9,
            "names": [
                "O",
                "B-PER",
                "I-PER",
                "B-ORG",
                "I-ORG",
                "B-LOC",
                "I-LOC",
                "B-MISC",
                "I-MISC"
            ],
            "names_file": null,
            "id": null,
            "_type": "ClassLabel"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

position

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:xglue/pos')
  • Descriptif :
XGLUE is a new benchmark dataset to evaluate the performance of cross-lingual pre-trained
models with respect to cross-lingual natural language understanding and generation.
The benchmark is composed of the following 11 tasks:
- NER
- POS Tagging (POS)
- News Classification (NC)
- MLQA
- XNLI
- PAWS-X
- Query-Ad Matching (QADSM)
- Web Page Ranking (WPR)
- QA Matching (QAM)
- Question Generation (QG)
- News Title Generation (NTG)

For more information, please take a look at https://microsoft.github.io/XGLUE/.
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Fractionnements :
Diviser Exemples
'test.ar' 679
'test.bg' 1115
'test.de' 976
'test.el' 455
'test.en' 2076
'test.es' 425
'test.fr' 415
'test.hi' 1683
'test.it' 481
'test.nl' 595
'test.pl' 2214
'test.ru' 600
'test.th' 497
'test.tr' 982
'test.ur' 534
'test.vi' 799
'test.zh' 499
'train' 25376
'validation.ar' 908
'validation.bg' 1114
'validation.de' 798
'validation.el' 402
'validation.en' 2001
'validation.es' 1399
'validation.fr' 1475
'validation.hi' 1658
'validation.it' 563
'validation.nl' 717
'validation.pl' 2214
'validation.ru' 578
'validation.th' 497
'validation.tr' 987
'validation.ur' 551
'validation.vi' 799
'validation.zh' 499
  • Caractéristiques :
{
    "words": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "pos": {
        "feature": {
            "num_classes": 17,
            "names": [
                "ADJ",
                "ADP",
                "ADV",
                "AUX",
                "CCONJ",
                "DET",
                "INTJ",
                "NOUN",
                "NUM",
                "PART",
                "PRON",
                "PROPN",
                "PUNCT",
                "SCONJ",
                "SYM",
                "VERB",
                "X"
            ],
            "names_file": null,
            "id": null,
            "_type": "ClassLabel"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

mlqa

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:xglue/mlqa')
  • Descriptif :
XGLUE is a new benchmark dataset to evaluate the performance of cross-lingual pre-trained
models with respect to cross-lingual natural language understanding and generation.
The benchmark is composed of the following 11 tasks:
- NER
- POS Tagging (POS)
- News Classification (NC)
- MLQA
- XNLI
- PAWS-X
- Query-Ad Matching (QADSM)
- Web Page Ranking (WPR)
- QA Matching (QAM)
- Question Generation (QG)
- News Title Generation (NTG)

For more information, please take a look at https://microsoft.github.io/XGLUE/.
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Fractionnements :
Diviser Exemples
'test.ar' 5335
'test.de' 4517
'test.en' 11590
'test.es' 5253
'test.hi' 4918
'test.vi' 5495
'test.zh' 5137
'train' 87599
'validation.ar' 517
'validation.de' 512
'validation.en' 1148
'validation.es' 500
'validation.hi' 507
'validation.vi' 511
'validation.zh' 504
  • Caractéristiques :
{
    "context": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answers": {
        "feature": {
            "answer_start": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            },
            "text": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            }
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

NC

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:xglue/nc')
  • Descriptif :
XGLUE is a new benchmark dataset to evaluate the performance of cross-lingual pre-trained
models with respect to cross-lingual natural language understanding and generation.
The benchmark is composed of the following 11 tasks:
- NER
- POS Tagging (POS)
- News Classification (NC)
- MLQA
- XNLI
- PAWS-X
- Query-Ad Matching (QADSM)
- Web Page Ranking (WPR)
- QA Matching (QAM)
- Question Generation (QG)
- News Title Generation (NTG)

For more information, please take a look at https://microsoft.github.io/XGLUE/.
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Fractionnements :
Diviser Exemples
'test.de' 10000
'test.en' 10000
'test.es' 10000
'test.fr' 10000
'test.ru' 10000
'train' 100000
'validation.de' 10000
'validation.en' 10000
'validation.es' 10000
'validation.fr' 10000
'validation.ru' 10000
  • Caractéristiques :
{
    "news_title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "news_body": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "news_category": {
        "num_classes": 10,
        "names": [
            "foodanddrink",
            "sports",
            "travel",
            "finance",
            "lifestyle",
            "news",
            "entertainment",
            "health",
            "video",
            "autos"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    }
}

xnli

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:xglue/xnli')
  • Descriptif :
XGLUE is a new benchmark dataset to evaluate the performance of cross-lingual pre-trained
models with respect to cross-lingual natural language understanding and generation.
The benchmark is composed of the following 11 tasks:
- NER
- POS Tagging (POS)
- News Classification (NC)
- MLQA
- XNLI
- PAWS-X
- Query-Ad Matching (QADSM)
- Web Page Ranking (WPR)
- QA Matching (QAM)
- Question Generation (QG)
- News Title Generation (NTG)

For more information, please take a look at https://microsoft.github.io/XGLUE/.
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Fractionnements :
Diviser Exemples
'test.ar' 5010
'test.bg' 5010
'test.de' 5010
'test.el' 5010
'test.en' 5010
'test.es' 5010
'test.fr' 5010
'test.hi' 5010
'test.ru' 5010
'test.sw' 5010
'test.th' 5010
'test.tr' 5010
'test.ur' 5010
'test.vi' 5010
'test.zh' 5010
'train' 392702
'validation.ar' 2490
'validation.bg' 2490
'validation.de' 2490
'validation.el' 2490
'validation.en' 2490
'validation.es' 2490
'validation.fr' 2490
'validation.hi' 2490
'validation.ru' 2490
'validation.sw' 2490
'validation.th' 2490
'validation.tr' 2490
'validation.ur' 2490
'validation.vi' 2490
'validation.zh' 2490
  • Caractéristiques :
{
    "premise": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "hypothesis": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "label": {
        "num_classes": 3,
        "names": [
            "entailment",
            "neutral",
            "contradiction"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    }
}

pattes-x

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:xglue/paws-x')
  • Descriptif :
XGLUE is a new benchmark dataset to evaluate the performance of cross-lingual pre-trained
models with respect to cross-lingual natural language understanding and generation.
The benchmark is composed of the following 11 tasks:
- NER
- POS Tagging (POS)
- News Classification (NC)
- MLQA
- XNLI
- PAWS-X
- Query-Ad Matching (QADSM)
- Web Page Ranking (WPR)
- QA Matching (QAM)
- Question Generation (QG)
- News Title Generation (NTG)

For more information, please take a look at https://microsoft.github.io/XGLUE/.
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Fractionnements :
Diviser Exemples
'test.de' 2000
'test.en' 2000
'test.es' 2000
'test.fr' 2000
'train' 49401
'validation.de' 2000
'validation.en' 2000
'validation.es' 2000
'validation.fr' 2000
  • Caractéristiques :
{
    "sentence1": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence2": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "label": {
        "num_classes": 2,
        "names": [
            "different",
            "same"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    }
}

qadsm

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:xglue/qadsm')
  • Descriptif :
XGLUE is a new benchmark dataset to evaluate the performance of cross-lingual pre-trained
models with respect to cross-lingual natural language understanding and generation.
The benchmark is composed of the following 11 tasks:
- NER
- POS Tagging (POS)
- News Classification (NC)
- MLQA
- XNLI
- PAWS-X
- Query-Ad Matching (QADSM)
- Web Page Ranking (WPR)
- QA Matching (QAM)
- Question Generation (QG)
- News Title Generation (NTG)

For more information, please take a look at https://microsoft.github.io/XGLUE/.
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Fractionnements :
Diviser Exemples
'test.de' 10000
'test.en' 10000
'test.fr' 10000
'train' 100000
'validation.de' 10000
'validation.en' 10000
'validation.fr' 10000
  • Caractéristiques :
{
    "query": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "ad_title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "ad_description": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "relevance_label": {
        "num_classes": 2,
        "names": [
            "Bad",
            "Good"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    }
}

wpr

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:xglue/wpr')
  • Descriptif :
XGLUE is a new benchmark dataset to evaluate the performance of cross-lingual pre-trained
models with respect to cross-lingual natural language understanding and generation.
The benchmark is composed of the following 11 tasks:
- NER
- POS Tagging (POS)
- News Classification (NC)
- MLQA
- XNLI
- PAWS-X
- Query-Ad Matching (QADSM)
- Web Page Ranking (WPR)
- QA Matching (QAM)
- Question Generation (QG)
- News Title Generation (NTG)

For more information, please take a look at https://microsoft.github.io/XGLUE/.
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Fractionnements :
Diviser Exemples
'test.de' 9997
'test.en' 10004
'test.es' 10006
'test.fr' 10020
'test.it' 10001
'test.pt' 10015
'test.zh' 9999
'train' 99997
'validation.de' 10004
'validation.en' 10008
'validation.es' 10004
'validation.fr' 10005
'validation.it' 10003
'validation.pt' 10001
'validation.zh' 10002
  • Caractéristiques :
{
    "query": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "web_page_title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "web_page_snippet": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "relavance_label": {
        "num_classes": 5,
        "names": [
            "Bad",
            "Fair",
            "Good",
            "Excellent",
            "Perfect"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    }
}

qam

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:xglue/qam')
  • Descriptif :
XGLUE is a new benchmark dataset to evaluate the performance of cross-lingual pre-trained
models with respect to cross-lingual natural language understanding and generation.
The benchmark is composed of the following 11 tasks:
- NER
- POS Tagging (POS)
- News Classification (NC)
- MLQA
- XNLI
- PAWS-X
- Query-Ad Matching (QADSM)
- Web Page Ranking (WPR)
- QA Matching (QAM)
- Question Generation (QG)
- News Title Generation (NTG)

For more information, please take a look at https://microsoft.github.io/XGLUE/.
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Fractionnements :
Diviser Exemples
'test.de' 10000
'test.en' 10000
'test.fr' 10000
'train' 100000
'validation.de' 10000
'validation.en' 10000
'validation.fr' 10000
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "label": {
        "num_classes": 2,
        "names": [
            "False",
            "True"
        ],
        "names_file": null,
        "id": null,
        "_type": "ClassLabel"
    }
}

qg

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:xglue/qg')
  • Descriptif :
XGLUE is a new benchmark dataset to evaluate the performance of cross-lingual pre-trained
models with respect to cross-lingual natural language understanding and generation.
The benchmark is composed of the following 11 tasks:
- NER
- POS Tagging (POS)
- News Classification (NC)
- MLQA
- XNLI
- PAWS-X
- Query-Ad Matching (QADSM)
- Web Page Ranking (WPR)
- QA Matching (QAM)
- Question Generation (QG)
- News Title Generation (NTG)

For more information, please take a look at https://microsoft.github.io/XGLUE/.
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Fractionnements :
Diviser Exemples
'test.de' 10000
'test.en' 10000
'test.es' 10000
'test.fr' 10000
'test.it' 10000
'test.pt' 10000
'train' 100000
'validation.de' 10000
'validation.en' 10000
'validation.es' 10000
'validation.fr' 10000
'validation.it' 10000
'validation.pt' 10000
  • Caractéristiques :
{
    "answer_passage": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

NTG

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:xglue/ntg')
  • Descriptif :
XGLUE is a new benchmark dataset to evaluate the performance of cross-lingual pre-trained
models with respect to cross-lingual natural language understanding and generation.
The benchmark is composed of the following 11 tasks:
- NER
- POS Tagging (POS)
- News Classification (NC)
- MLQA
- XNLI
- PAWS-X
- Query-Ad Matching (QADSM)
- Web Page Ranking (WPR)
- QA Matching (QAM)
- Question Generation (QG)
- News Title Generation (NTG)

For more information, please take a look at https://microsoft.github.io/XGLUE/.
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Fractionnements :
Diviser Exemples
'test.de' 10000
'test.en' 10000
'test.es' 10000
'test.fr' 10000
'test.ru' 10000
'train' 300000
'validation.de' 10000
'validation.en' 10000
'validation.es' 10000
'validation.fr' 10000
'validation.ru' 10000
  • Caractéristiques :
{
    "news_body": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "news_title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}