MeanSquaredError

public class MeanSquaredError

Computes the mean of squares of errors between labels and predictions.

loss = loss = square(labels - predictions)

Standalone usage:

    Operand<TFloat32> labels =
        tf.constant(new float[][] { {0.f, 1.f}, {0.f, 0.f} });
    Operand<TFloat32> predictions =
        tf.constant(new float[][] { {1.f, 1.f}, {1.f, 0.f} });
    MeanSquaredError mse = new MeanSquaredError(tf);
    Operand<TFloat32> result = mse.call(labels, predictions);
    // produces 0.5f
 

Calling with sample weight:

    Operand<TFloat32> sampleWeight = tf.constant(new float[] {0.7f, 0.3f});
    Operand<TFloat32> result = mse.call(labels, predictions, sampleWeight);
    // produces 0.25f
 

Using SUM reduction type:

    MeanSquaredError mse = new MeanSquaredError(tf, Reduction.SUM);
    Operand<TFloat32> result = mse.call(labels, predictions);
    // produces 1.0f
 

Using NONE reduction type:

    MeanSquaredError mse = new MeanSquaredError(tf, Reduction.NONE);
    Operand<TFloat32> result = mse.call(labels, predictions);
    // produces [0.5f, 0.5f]
 

Inherited Fields

org.tensorflow.framework.losses.Loss
public static final Reduction REDUCTION_DEFAULT

Public Constructors

MeanSquaredError(Ops tf)
Creates a MeanSquaredError Loss using getSimpleName() as the loss name and a Loss Reduction of REDUCTION_DEFAULT
MeanSquaredError(Ops tf, Reduction reduction)
Creates a MeanSquaredError Loss using getSimpleName() as the loss name
MeanSquaredError(Ops tf, String name, Reduction reduction)
Creates a MeanSquaredError

Public Methods

<T extends TNumber> Operand<T>
call(Operand<? extends TNumber> labels, Operand<T> predictions, Operand<T> sampleWeights)
Generates an Operand that calculates the loss.

Inherited Methods

org.tensorflow.framework.losses.Loss
abstract <T extends TNumber> Operand<T>
call(Operand<? extends TNumber> labels, Operand<T> predictions, Operand<T> sampleWeights)
Generates an Operand that calculates the loss.
<T extends TNumber> Operand<T>
call(Operand<? extends TNumber> labels, Operand<T> predictions)
Calculates the loss
Reduction
getReduction()
Gets the loss reduction
Ops
getTF()
Gets the TensorFlow Ops
boolean
equals(Object arg0)
final Class<?>
getClass()
int
hashCode()
final void
notify()
final void
notifyAll()
String
toString()
final void
wait(long arg0, int arg1)
final void
wait(long arg0)
final void
wait()

Public Constructors

public MeanSquaredError (Ops tf)

Creates a MeanSquaredError Loss using getSimpleName() as the loss name and a Loss Reduction of REDUCTION_DEFAULT

Parameters
tf the TensorFlow Ops

public MeanSquaredError (Ops tf, Reduction reduction)

Creates a MeanSquaredError Loss using getSimpleName() as the loss name

Parameters
tf the TensorFlow Ops
reduction Type of Reduction to apply to the loss.

public MeanSquaredError (Ops tf, String name, Reduction reduction)

Creates a MeanSquaredError

Parameters
tf the TensorFlow Ops
name the name of the loss
reduction Type of Reduction to apply to the loss.

Public Methods

public Operand<T> call (Operand<? extends TNumber> labels, Operand<T> predictions, Operand<T> sampleWeights)

Generates an Operand that calculates the loss.

Parameters
labels the truth values or labels
predictions the predictions
sampleWeights Optional sampleWeights acts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. If SampleWeights is a tensor of size [batch_size], then the total loss for each sample of the batch is rescaled by the corresponding element in the SampleWeights vector. If the shape of SampleWeights is [batch_size, d0, .. dN-1] (or can be broadcast to this shape), then each loss element of predictions is scaled by the corresponding value of SampleWeights. (Note on dN-1: all loss functions reduce by 1 dimension, usually axis=-1.)
Returns
  • the loss