ApplyPowerSign

Stay organized with collections Save and categorize content based on your preferences.
public final class ApplyPowerSign

Update '*var' according to the AddSign update.

m_t <- beta1 * m_{t-1} + (1 - beta1) * g update <- exp(logbase * sign_decay * sign(g) * sign(m_t)) * g variable <- variable - lr_t * update

Nested Classes

class ApplyPowerSign.Options Optional attributes for ApplyPowerSign  

Constants

String OP_NAME The name of this op, as known by TensorFlow core engine

Public Methods

Output<T>
asOutput()
Returns the symbolic handle of the tensor.
static <T extends TType> ApplyPowerSign<T>
create(Scope scope, Operand<T> var, Operand<T> m, Operand<T> lr, Operand<T> logbase, Operand<T> signDecay, Operand<T> beta, Operand<T> grad, Options... options)
Factory method to create a class wrapping a new ApplyPowerSign operation.
Output<T>
out()
Same as "var".
static ApplyPowerSign.Options
useLocking(Boolean useLocking)

Inherited Methods

Constants

public static final String OP_NAME

The name of this op, as known by TensorFlow core engine

Constant Value: "ApplyPowerSign"

Public Methods

public Output<T> asOutput ()

Returns the symbolic handle of the tensor.

Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.

public static ApplyPowerSign<T> create (Scope scope, Operand<T> var, Operand<T> m, Operand<T> lr, Operand<T> logbase, Operand<T> signDecay, Operand<T> beta, Operand<T> grad, Options... options)

Factory method to create a class wrapping a new ApplyPowerSign operation.

Parameters
scope current scope
var Should be from a Variable().
m Should be from a Variable().
lr Scaling factor. Must be a scalar.
logbase Must be a scalar.
signDecay Must be a scalar.
beta Must be a scalar.
grad The gradient.
options carries optional attributes values
Returns
  • a new instance of ApplyPowerSign

public Output<T> out ()

Same as "var".

public static ApplyPowerSign.Options useLocking (Boolean useLocking)

Parameters
useLocking If `True`, updating of the var and m tensors is protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.