Introduzione al sintonizzatore Keras

Mantieni tutto organizzato con le raccolte Salva e classifica i contenuti in base alle tue preferenze.

Visualizza su TensorFlow.org Esegui in Google Colab Visualizza l'origine su GitHub Scarica quaderno

Panoramica

Keras Tuner è una libreria che ti aiuta a scegliere il set ottimale di iperparametri per il tuo programma TensorFlow. Il processo di selezione del set di iperparametri corretto per l'applicazione di machine learning (ML) è chiamato ottimizzazione degli iperparametri o hypertuning .

Gli iperparametri sono le variabili che governano il processo di training e la topologia di un modello ML. Queste variabili rimangono costanti durante il processo di formazione e influiscono direttamente sulle prestazioni del programma ML. Gli iperparametri sono di due tipi:

  1. Iperparametri del modello che influenzano la selezione del modello come il numero e la larghezza dei livelli nascosti
  2. Iperparametri dell'algoritmo che influenzano la velocità e la qualità dell'algoritmo di apprendimento come il tasso di apprendimento per la discesa a gradiente stocastico (SGD) e il numero di vicini più vicini per il classificatore ak Nearest Neighbors (KNN)

In questo tutorial, utilizzerai Keras Tuner per eseguire l'hypertuning per un'applicazione di classificazione delle immagini.

Impostare

import tensorflow as tf
from tensorflow import keras

Installa e importa Keras Tuner.

pip install -q -U keras-tuner
import keras_tuner as kt

Scarica e prepara il set di dati

In questo tutorial, utilizzerai Keras Tuner per trovare i migliori iperparametri per un modello di apprendimento automatico che classifica le immagini di abbigliamento dal set di dati Fashion MNIST .

Carica i dati.

(img_train, label_train), (img_test, label_test) = keras.datasets.fashion_mnist.load_data()
# Normalize pixel values between 0 and 1
img_train = img_train.astype('float32') / 255.0
img_test = img_test.astype('float32') / 255.0

Definisci il modello

Quando crei un modello per l'hypertuning, oltre all'architettura del modello, definisci anche lo spazio di ricerca degli iperparametri. Il modello che hai impostato per l'hypertuning è chiamato hypermodel .

È possibile definire un ipermodello attraverso due approcci:

  • Utilizzando una funzione di creazione modelli
  • Sottoclassando la classe HyperModel dell'API Keras Tuner

È inoltre possibile utilizzare due classi HyperModel predefinite: HyperXception e HyperResNet per applicazioni di visione artificiale.

In questo tutorial, utilizzerai una funzione di creazione modelli per definire il modello di classificazione delle immagini. La funzione di creazione del modello restituisce un modello compilato e utilizza gli iperparametri definiti in linea per ottimizzare il modello.

def model_builder(hp):
  model = keras.Sequential()
  model.add(keras.layers.Flatten(input_shape=(28, 28)))

  # Tune the number of units in the first Dense layer
  # Choose an optimal value between 32-512
  hp_units = hp.Int('units', min_value=32, max_value=512, step=32)
  model.add(keras.layers.Dense(units=hp_units, activation='relu'))
  model.add(keras.layers.Dense(10))

  # Tune the learning rate for the optimizer
  # Choose an optimal value from 0.01, 0.001, or 0.0001
  hp_learning_rate = hp.Choice('learning_rate', values=[1e-2, 1e-3, 1e-4])

  model.compile(optimizer=keras.optimizers.Adam(learning_rate=hp_learning_rate),
                loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                metrics=['accuracy'])

  return model

Istanziare il sintonizzatore ed eseguire l'hypertuning

Istanziare il sintonizzatore per eseguire l'hypertuning. Il Keras Tuner ha quattro sintonizzatori disponibili: RandomSearch , Hyperband , BayesianOptimization e Sklearn . In questo tutorial, usi il sintonizzatore Hyperband .

Per creare un'istanza del sintonizzatore Hyperband, è necessario specificare l'ipermodello, l' objective da ottimizzare e il numero massimo di epoche da addestrare ( max_epochs ).

tuner = kt.Hyperband(model_builder,
                     objective='val_accuracy',
                     max_epochs=10,
                     factor=3,
                     directory='my_dir',
                     project_name='intro_to_kt')

L'algoritmo di ottimizzazione Hyperband utilizza l'allocazione adattiva delle risorse e l'arresto anticipato per convergere rapidamente su un modello ad alte prestazioni. Questo viene fatto utilizzando una staffa in stile campionato sportivo. L'algoritmo addestra un gran numero di modelli per alcune epoche e porta solo la metà dei modelli con le migliori prestazioni al round successivo. Hyperband determina il numero di modelli da addestrare in una parentesi calcolando 1 + log factor ( max_epochs ) e arrotondandolo all'intero più vicino.

Crea una richiamata per interrompere l'allenamento in anticipo dopo aver raggiunto un determinato valore per la perdita di convalida.

stop_early = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5)

Esegui la ricerca dell'iperparametro. Gli argomenti per il metodo di ricerca sono gli stessi utilizzati per tf.keras.model.fit oltre al callback sopra.

tuner.search(img_train, label_train, epochs=50, validation_split=0.2, callbacks=[stop_early])

# Get the optimal hyperparameters
best_hps=tuner.get_best_hyperparameters(num_trials=1)[0]

print(f"""
The hyperparameter search is complete. The optimal number of units in the first densely-connected
layer is {best_hps.get('units')} and the optimal learning rate for the optimizer
is {best_hps.get('learning_rate')}.
""")
Trial 30 Complete [00h 00m 35s]
val_accuracy: 0.8925833106040955

Best val_accuracy So Far: 0.8925833106040955
Total elapsed time: 00h 07m 26s
INFO:tensorflow:Oracle triggered exit

The hyperparameter search is complete. The optimal number of units in the first densely-connected
layer is 320 and the optimal learning rate for the optimizer
is 0.001.

Allena il modello

Trova il numero ottimale di epoche per addestrare il modello con gli iperparametri ottenuti dalla ricerca.

# Build the model with the optimal hyperparameters and train it on the data for 50 epochs
model = tuner.hypermodel.build(best_hps)
history = model.fit(img_train, label_train, epochs=50, validation_split=0.2)

val_acc_per_epoch = history.history['val_accuracy']
best_epoch = val_acc_per_epoch.index(max(val_acc_per_epoch)) + 1
print('Best epoch: %d' % (best_epoch,))
Epoch 1/50
1500/1500 [==============================] - 4s 2ms/step - loss: 0.4988 - accuracy: 0.8232 - val_loss: 0.4142 - val_accuracy: 0.8517
Epoch 2/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.3717 - accuracy: 0.8646 - val_loss: 0.3437 - val_accuracy: 0.8773
Epoch 3/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.3317 - accuracy: 0.8779 - val_loss: 0.3806 - val_accuracy: 0.8639
Epoch 4/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.3079 - accuracy: 0.8867 - val_loss: 0.3321 - val_accuracy: 0.8801
Epoch 5/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.2882 - accuracy: 0.8943 - val_loss: 0.3313 - val_accuracy: 0.8806
Epoch 6/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.2727 - accuracy: 0.8977 - val_loss: 0.3152 - val_accuracy: 0.8857
Epoch 7/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.2610 - accuracy: 0.9016 - val_loss: 0.3225 - val_accuracy: 0.8873
Epoch 8/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.2474 - accuracy: 0.9060 - val_loss: 0.3198 - val_accuracy: 0.8867
Epoch 9/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.2385 - accuracy: 0.9105 - val_loss: 0.3266 - val_accuracy: 0.8822
Epoch 10/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.2295 - accuracy: 0.9142 - val_loss: 0.3382 - val_accuracy: 0.8835
Epoch 11/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.2170 - accuracy: 0.9185 - val_loss: 0.3215 - val_accuracy: 0.8885
Epoch 12/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.2102 - accuracy: 0.9202 - val_loss: 0.3194 - val_accuracy: 0.8923
Epoch 13/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.2036 - accuracy: 0.9235 - val_loss: 0.3176 - val_accuracy: 0.8901
Epoch 14/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1955 - accuracy: 0.9272 - val_loss: 0.3269 - val_accuracy: 0.8912
Epoch 15/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1881 - accuracy: 0.9292 - val_loss: 0.3391 - val_accuracy: 0.8878
Epoch 16/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1821 - accuracy: 0.9321 - val_loss: 0.3272 - val_accuracy: 0.8920
Epoch 17/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1771 - accuracy: 0.9332 - val_loss: 0.3536 - val_accuracy: 0.8876
Epoch 18/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1697 - accuracy: 0.9363 - val_loss: 0.3395 - val_accuracy: 0.8927
Epoch 19/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1652 - accuracy: 0.9374 - val_loss: 0.3464 - val_accuracy: 0.8937
Epoch 20/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1606 - accuracy: 0.9392 - val_loss: 0.3576 - val_accuracy: 0.8888
Epoch 21/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1539 - accuracy: 0.9417 - val_loss: 0.3724 - val_accuracy: 0.8867
Epoch 22/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1503 - accuracy: 0.9435 - val_loss: 0.3607 - val_accuracy: 0.8954
Epoch 23/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1450 - accuracy: 0.9454 - val_loss: 0.3525 - val_accuracy: 0.8919
Epoch 24/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1398 - accuracy: 0.9473 - val_loss: 0.3745 - val_accuracy: 0.8919
Epoch 25/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1370 - accuracy: 0.9478 - val_loss: 0.3616 - val_accuracy: 0.8941
Epoch 26/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1334 - accuracy: 0.9498 - val_loss: 0.3866 - val_accuracy: 0.8956
Epoch 27/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1282 - accuracy: 0.9519 - val_loss: 0.3947 - val_accuracy: 0.8924
Epoch 28/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1254 - accuracy: 0.9538 - val_loss: 0.4223 - val_accuracy: 0.8870
Epoch 29/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1222 - accuracy: 0.9536 - val_loss: 0.3805 - val_accuracy: 0.8898
Epoch 30/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1179 - accuracy: 0.9546 - val_loss: 0.4052 - val_accuracy: 0.8942
Epoch 31/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1162 - accuracy: 0.9560 - val_loss: 0.3909 - val_accuracy: 0.8955
Epoch 32/50
1500/1500 [==============================] - 4s 2ms/step - loss: 0.1152 - accuracy: 0.9572 - val_loss: 0.4160 - val_accuracy: 0.8908
Epoch 33/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1100 - accuracy: 0.9583 - val_loss: 0.4280 - val_accuracy: 0.8938
Epoch 34/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1055 - accuracy: 0.9603 - val_loss: 0.4148 - val_accuracy: 0.8963
Epoch 35/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1044 - accuracy: 0.9606 - val_loss: 0.4302 - val_accuracy: 0.8921
Epoch 36/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1046 - accuracy: 0.9605 - val_loss: 0.4205 - val_accuracy: 0.8947
Epoch 37/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0993 - accuracy: 0.9621 - val_loss: 0.4551 - val_accuracy: 0.8875
Epoch 38/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0972 - accuracy: 0.9635 - val_loss: 0.4622 - val_accuracy: 0.8914
Epoch 39/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0951 - accuracy: 0.9642 - val_loss: 0.4423 - val_accuracy: 0.8950
Epoch 40/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0947 - accuracy: 0.9637 - val_loss: 0.4498 - val_accuracy: 0.8948
Epoch 41/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0876 - accuracy: 0.9675 - val_loss: 0.4694 - val_accuracy: 0.8959
Epoch 42/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0902 - accuracy: 0.9657 - val_loss: 0.4778 - val_accuracy: 0.8938
Epoch 43/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0876 - accuracy: 0.9676 - val_loss: 0.4716 - val_accuracy: 0.8911
Epoch 44/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0884 - accuracy: 0.9674 - val_loss: 0.4827 - val_accuracy: 0.8918
Epoch 45/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0764 - accuracy: 0.9715 - val_loss: 0.5008 - val_accuracy: 0.8953
Epoch 46/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0823 - accuracy: 0.9695 - val_loss: 0.5157 - val_accuracy: 0.8874
Epoch 47/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0789 - accuracy: 0.9704 - val_loss: 0.5198 - val_accuracy: 0.8910
Epoch 48/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0778 - accuracy: 0.9716 - val_loss: 0.5031 - val_accuracy: 0.8932
Epoch 49/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0747 - accuracy: 0.9718 - val_loss: 0.4982 - val_accuracy: 0.8953
Epoch 50/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0786 - accuracy: 0.9706 - val_loss: 0.5198 - val_accuracy: 0.8976
Best epoch: 50

Re-istanziare l'ipermodello e addestrarlo con il numero ottimale di epoche dall'alto.

hypermodel = tuner.hypermodel.build(best_hps)

# Retrain the model
hypermodel.fit(img_train, label_train, epochs=best_epoch, validation_split=0.2)
Epoch 1/50
1500/1500 [==============================] - 4s 2ms/step - loss: 0.4987 - accuracy: 0.8236 - val_loss: 0.4065 - val_accuracy: 0.8488
Epoch 2/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.3738 - accuracy: 0.8652 - val_loss: 0.3847 - val_accuracy: 0.8613
Epoch 3/50
1500/1500 [==============================] - 4s 2ms/step - loss: 0.3344 - accuracy: 0.8775 - val_loss: 0.3568 - val_accuracy: 0.8750
Epoch 4/50
1500/1500 [==============================] - 4s 2ms/step - loss: 0.3065 - accuracy: 0.8865 - val_loss: 0.3326 - val_accuracy: 0.8811
Epoch 5/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.2880 - accuracy: 0.8930 - val_loss: 0.3208 - val_accuracy: 0.8843
Epoch 6/50
1500/1500 [==============================] - 4s 2ms/step - loss: 0.2744 - accuracy: 0.8981 - val_loss: 0.3313 - val_accuracy: 0.8810
Epoch 7/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.2585 - accuracy: 0.9019 - val_loss: 0.3352 - val_accuracy: 0.8790
Epoch 8/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.2445 - accuracy: 0.9078 - val_loss: 0.3151 - val_accuracy: 0.8849
Epoch 9/50
1500/1500 [==============================] - 4s 2ms/step - loss: 0.2366 - accuracy: 0.9113 - val_loss: 0.3167 - val_accuracy: 0.8881
Epoch 10/50
1500/1500 [==============================] - 4s 2ms/step - loss: 0.2241 - accuracy: 0.9162 - val_loss: 0.3258 - val_accuracy: 0.8857
Epoch 11/50
1500/1500 [==============================] - 4s 2ms/step - loss: 0.2158 - accuracy: 0.9194 - val_loss: 0.3087 - val_accuracy: 0.8927
Epoch 12/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.2091 - accuracy: 0.9218 - val_loss: 0.3287 - val_accuracy: 0.8904
Epoch 13/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1998 - accuracy: 0.9243 - val_loss: 0.3131 - val_accuracy: 0.8950
Epoch 14/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1937 - accuracy: 0.9271 - val_loss: 0.3177 - val_accuracy: 0.8925
Epoch 15/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1859 - accuracy: 0.9303 - val_loss: 0.3334 - val_accuracy: 0.8918
Epoch 16/50
1500/1500 [==============================] - 4s 2ms/step - loss: 0.1779 - accuracy: 0.9334 - val_loss: 0.3299 - val_accuracy: 0.8929
Epoch 17/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1743 - accuracy: 0.9348 - val_loss: 0.3391 - val_accuracy: 0.8920
Epoch 18/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1687 - accuracy: 0.9366 - val_loss: 0.3302 - val_accuracy: 0.8974
Epoch 19/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1628 - accuracy: 0.9385 - val_loss: 0.3641 - val_accuracy: 0.8868
Epoch 20/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1597 - accuracy: 0.9405 - val_loss: 0.3523 - val_accuracy: 0.8942
Epoch 21/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1534 - accuracy: 0.9434 - val_loss: 0.3584 - val_accuracy: 0.8951
Epoch 22/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1507 - accuracy: 0.9441 - val_loss: 0.3577 - val_accuracy: 0.8923
Epoch 23/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1453 - accuracy: 0.9452 - val_loss: 0.3807 - val_accuracy: 0.8957
Epoch 24/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1392 - accuracy: 0.9476 - val_loss: 0.3711 - val_accuracy: 0.8960
Epoch 25/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1364 - accuracy: 0.9494 - val_loss: 0.3731 - val_accuracy: 0.8940
Epoch 26/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1315 - accuracy: 0.9511 - val_loss: 0.3805 - val_accuracy: 0.8932
Epoch 27/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1319 - accuracy: 0.9507 - val_loss: 0.3966 - val_accuracy: 0.8880
Epoch 28/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1266 - accuracy: 0.9534 - val_loss: 0.3994 - val_accuracy: 0.8920
Epoch 29/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1207 - accuracy: 0.9546 - val_loss: 0.3918 - val_accuracy: 0.8959
Epoch 30/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1174 - accuracy: 0.9567 - val_loss: 0.4043 - val_accuracy: 0.8928
Epoch 31/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1191 - accuracy: 0.9546 - val_loss: 0.4114 - val_accuracy: 0.8951
Epoch 32/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1140 - accuracy: 0.9563 - val_loss: 0.4149 - val_accuracy: 0.8962
Epoch 33/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1121 - accuracy: 0.9574 - val_loss: 0.4373 - val_accuracy: 0.8931
Epoch 34/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1085 - accuracy: 0.9598 - val_loss: 0.4353 - val_accuracy: 0.8939
Epoch 35/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1056 - accuracy: 0.9591 - val_loss: 0.4325 - val_accuracy: 0.8938
Epoch 36/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1066 - accuracy: 0.9600 - val_loss: 0.4700 - val_accuracy: 0.8899
Epoch 37/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1019 - accuracy: 0.9615 - val_loss: 0.4440 - val_accuracy: 0.8947
Epoch 38/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0973 - accuracy: 0.9635 - val_loss: 0.4481 - val_accuracy: 0.8959
Epoch 39/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.1008 - accuracy: 0.9622 - val_loss: 0.4772 - val_accuracy: 0.8954
Epoch 40/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0919 - accuracy: 0.9653 - val_loss: 0.4723 - val_accuracy: 0.8916
Epoch 41/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0921 - accuracy: 0.9653 - val_loss: 0.4867 - val_accuracy: 0.8953
Epoch 42/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0919 - accuracy: 0.9657 - val_loss: 0.4710 - val_accuracy: 0.8936
Epoch 43/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0873 - accuracy: 0.9664 - val_loss: 0.4844 - val_accuracy: 0.8905
Epoch 44/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0884 - accuracy: 0.9669 - val_loss: 0.4972 - val_accuracy: 0.8963
Epoch 45/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0849 - accuracy: 0.9685 - val_loss: 0.4790 - val_accuracy: 0.8969
Epoch 46/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0831 - accuracy: 0.9687 - val_loss: 0.5028 - val_accuracy: 0.8945
Epoch 47/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0793 - accuracy: 0.9698 - val_loss: 0.5031 - val_accuracy: 0.8945
Epoch 48/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0806 - accuracy: 0.9693 - val_loss: 0.5065 - val_accuracy: 0.8990
Epoch 49/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0751 - accuracy: 0.9714 - val_loss: 0.5719 - val_accuracy: 0.8924
Epoch 50/50
1500/1500 [==============================] - 3s 2ms/step - loss: 0.0785 - accuracy: 0.9707 - val_loss: 0.5123 - val_accuracy: 0.8985
<keras.callbacks.History at 0x7fb39810a150>

Per completare questa esercitazione, valutare l'ipermodello sui dati del test.

eval_result = hypermodel.evaluate(img_test, label_test)
print("[test loss, test accuracy]:", eval_result)
313/313 [==============================] - 1s 2ms/step - loss: 0.5632 - accuracy: 0.8908
[test loss, test accuracy]: [0.5631944537162781, 0.8907999992370605]

La my_dir/intro_to_kt contiene registri dettagliati e checkpoint per ogni prova (configurazione del modello) eseguita durante la ricerca dell'iperparametro. Se si esegue nuovamente la ricerca dell'iperparametro, Keras Tuner utilizza lo stato esistente di questi registri per riprendere la ricerca. Per disabilitare questo comportamento, passare un ulteriore argomento overwrite=True durante la creazione di un'istanza del sintonizzatore.

Riepilogo

In questo tutorial, hai imparato come usare Keras Tuner per ottimizzare gli iperparametri per un modello. Per saperne di più sul Keras Tuner, dai un'occhiata a queste risorse aggiuntive:

Controlla anche il dashboard di HParams in TensorBoard per ottimizzare in modo interattivo gli iperparametri del tuo modello.