Class Index

A B C D E F G H I J K L M N O P Q R S T U V W X Z

A

Abort Raise a exception to abort the process when called. 
Abort.Options Optional attributes for Abort  
Abs<T extends TNumber> Computes the absolute value of a tensor. 
AbstractDataBuffer<T>  
AbstractDataBufferWindow<B extends DataBuffer<?>>  
AbstractDenseNdArray<T, U extends NdArray<T>>  
AbstractNdArray<T, U extends NdArray<T>>  
AbstractTF_Buffer  
AbstractTF_Graph  
AbstractTF_ImportGraphDefOptions  
AbstractTF_Session  
AbstractTF_SessionOptions  
AbstractTF_Status  
AbstractTF_Tensor  
AbstractTFE_Context  
AbstractTFE_ContextOptions  
AbstractTFE_Op  
AbstractTFE_TensorHandle  
AccumulateN<T extends TType> Returns the element-wise sum of a list of tensors. 
AccumulatorApplyGradient Applies a gradient to a given accumulator. 
AccumulatorNumAccumulated Returns the number of gradients aggregated in the given accumulators. 
AccumulatorSetGlobalStep Updates the accumulator with a new value for global_step. 
AccumulatorTakeGradient<T extends TType> Extracts the average gradient in the given ConditionalAccumulator. 
Acos<T extends TType> Computes acos of x element-wise. 
Acosh<T extends TType> Computes inverse hyperbolic cosine of x element-wise. 
Activation<T extends TNumber> Abstract base class for Activations

Note: The ERROR(/#tf) attribute must be set prior to invoking the call method. 

AdaDelta Optimizer that implements the Adadelta algorithm. 
AdaGrad Optimizer that implements the Adagrad algorithm. 
AdaGradDA Optimizer that implements the Adagrad Dual-Averaging algorithm. 
Adam Optimizer that implements the Adam algorithm. 
Adamax Optimizer that implements the Adamax algorithm. 
Add<T extends TType> Returns x + y element-wise. 
AddManySparseToTensorsMap Add an `N`-minibatch `SparseTensor` to a `SparseTensorsMap`, return `N` handles. 
AddManySparseToTensorsMap.Options Optional attributes for AddManySparseToTensorsMap  
AddN<T extends TType> Add all input tensors element wise. 
AddSparseToTensorsMap Add a `SparseTensor` to a `SparseTensorsMap` return its handle. 
AddSparseToTensorsMap.Options Optional attributes for AddSparseToTensorsMap  
AdjustContrast<T extends TNumber> Adjust the contrast of one or more images. 
AdjustHue<T extends TNumber> Adjust the hue of one or more images. 
AdjustSaturation<T extends TNumber> Adjust the saturation of one or more images. 
All Computes the "logical and" of elements across dimensions of a tensor. 
All.Options Optional attributes for All  
AllCandidateSampler Generates labels for candidate sampling with a learned unigram distribution. 
AllCandidateSampler.Options Optional attributes for AllCandidateSampler  
AllocationDescription Protobuf type tensorflow.AllocationDescription  
AllocationDescription.Builder Protobuf type tensorflow.AllocationDescription  
AllocationDescriptionOrBuilder  
AllocationDescriptionProtos  
AllocationRecord
 An allocation/de-allocation operation performed by the allocator. 
AllocationRecord.Builder
 An allocation/de-allocation operation performed by the allocator. 
AllocationRecordOrBuilder  
AllocatorMemoryUsed Protobuf type tensorflow.AllocatorMemoryUsed  
AllocatorMemoryUsed.Builder Protobuf type tensorflow.AllocatorMemoryUsed  
AllocatorMemoryUsedOrBuilder  
AllReduce<T extends TNumber> Mutually reduces multiple tensors of identical type and shape. 
AllReduce.Options Optional attributes for AllReduce  
AllToAll<T extends TType> An Op to exchange data across TPU replicas. 
Angle<U extends TNumber> Returns the argument of a complex number. 
AnonymousIterator A container for an iterator resource. 
AnonymousMemoryCache  
AnonymousMultiDeviceIterator A container for a multi device iterator resource. 
AnonymousRandomSeedGenerator  
AnonymousSeedGenerator  
Any Computes the "logical or" of elements across dimensions of a tensor. 
Any.Options Optional attributes for Any  
ApiDef
 Used to specify and override the default API & behavior in the
 generated code for client languages, from what you would get from
 the OpDef alone. 
ApiDef.Arg Protobuf type tensorflow.ApiDef.Arg  
ApiDef.Arg.Builder Protobuf type tensorflow.ApiDef.Arg  
ApiDef.ArgOrBuilder  
ApiDef.Attr
 Description of the graph-construction-time configuration of this
 Op. 
ApiDef.Attr.Builder
 Description of the graph-construction-time configuration of this
 Op. 
ApiDef.AttrOrBuilder  
ApiDef.Builder
 Used to specify and override the default API & behavior in the
 generated code for client languages, from what you would get from
 the OpDef alone. 
ApiDef.Endpoint
 If you specify any endpoint, this will replace all of the
 inherited endpoints. 
ApiDef.Endpoint.Builder
 If you specify any endpoint, this will replace all of the
 inherited endpoints. 
ApiDef.EndpointOrBuilder  
ApiDef.Visibility Protobuf enum tensorflow.ApiDef.Visibility  
ApiDefOrBuilder  
ApiDefProtos  
ApiDefs Protobuf type tensorflow.ApiDefs  
ApiDefs.Builder Protobuf type tensorflow.ApiDefs  
ApiDefsOrBuilder  
ApplyAdadelta<T extends TType> Update '*var' according to the adadelta scheme. 
ApplyAdadelta.Options Optional attributes for ApplyAdadelta  
ApplyAdagrad<T extends TType> Update '*var' according to the adagrad scheme. 
ApplyAdagrad.Options Optional attributes for ApplyAdagrad  
ApplyAdagradDa<T extends TType> Update '*var' according to the proximal adagrad scheme. 
ApplyAdagradDa.Options Optional attributes for ApplyAdagradDa  
ApplyAdagradV2<T extends TType> Update '*var' according to the adagrad scheme. 
ApplyAdagradV2.Options Optional attributes for ApplyAdagradV2  
ApplyAdam<T extends TType> Update '*var' according to the Adam algorithm. 
ApplyAdam.Options Optional attributes for ApplyAdam  
ApplyAdaMax<T extends TType> Update '*var' according to the AdaMax algorithm. 
ApplyAdaMax.Options Optional attributes for ApplyAdaMax  
ApplyAddSign<T extends TType> Update '*var' according to the AddSign update. 
ApplyAddSign.Options Optional attributes for ApplyAddSign  
ApplyCenteredRmsProp<T extends TType> Update '*var' according to the centered RMSProp algorithm. 
ApplyCenteredRmsProp.Options Optional attributes for ApplyCenteredRmsProp  
ApplyFtrl<T extends TType> Update '*var' according to the Ftrl-proximal scheme. 
ApplyFtrl.Options Optional attributes for ApplyFtrl  
ApplyGradientDescent<T extends TType> Update '*var' by subtracting 'alpha' * 'delta' from it. 
ApplyGradientDescent.Options Optional attributes for ApplyGradientDescent  
ApplyMomentum<T extends TType> Update '*var' according to the momentum scheme. 
ApplyMomentum.Options Optional attributes for ApplyMomentum  
ApplyPowerSign<T extends TType> Update '*var' according to the AddSign update. 
ApplyPowerSign.Options Optional attributes for ApplyPowerSign  
ApplyProximalAdagrad<T extends TType> Update '*var' and '*accum' according to FOBOS with Adagrad learning rate. 
ApplyProximalAdagrad.Options Optional attributes for ApplyProximalAdagrad  
ApplyProximalGradientDescent<T extends TType> Update '*var' as FOBOS algorithm with fixed learning rate. 
ApplyProximalGradientDescent.Options Optional attributes for ApplyProximalGradientDescent  
ApplyRmsProp<T extends TType> Update '*var' according to the RMSProp algorithm. 
ApplyRmsProp.Options Optional attributes for ApplyRmsProp  
ApproximateEqual Returns the truth value of abs(x-y) < tolerance element-wise. 
ApproximateEqual.Options Optional attributes for ApproximateEqual  
ArgMax<V extends TNumber> Returns the index with the largest value across dimensions of a tensor. 
ArgMin<V extends TNumber> Returns the index with the smallest value across dimensions of a tensor. 
Asin<T extends TType> Computes the trignometric inverse sine of x element-wise. 
Asinh<T extends TType> Computes inverse hyperbolic sine of x element-wise. 
AssertCardinalityDataset  
AssertNextDataset A transformation that asserts which transformations happen next. 
AssertNextDataset  
AssertThat Asserts that the given condition is true. 
AssertThat.Options Optional attributes for AssertThat  
AssetFileDef
 An asset file def for a single file or a set of sharded files with the same
 name. 
AssetFileDef.Builder
 An asset file def for a single file or a set of sharded files with the same
 name. 
AssetFileDefOrBuilder  
Assign<T extends TType> Update 'ref' by assigning 'value' to it. 
Assign.Options Optional attributes for Assign  
AssignAdd<T extends TType> Update 'ref' by adding 'value' to it. 
AssignAdd.Options Optional attributes for AssignAdd  
AssignAddVariableOp Adds a value to the current value of a variable. 
AssignSub<T extends TType> Update 'ref' by subtracting 'value' from it. 
AssignSub.Options Optional attributes for AssignSub  
AssignSubVariableOp Subtracts a value from the current value of a variable. 
AssignVariableOp Assigns a new value to a variable. 
AsString Converts each entry in the given tensor to strings. 
AsString.Options Optional attributes for AsString  
Atan<T extends TType> Computes the trignometric inverse tangent of x element-wise. 
Atan2<T extends TNumber> Computes arctangent of `y/x` element-wise, respecting signs of the arguments. 
Atanh<T extends TType> Computes inverse hyperbolic tangent of x element-wise. 
AttrValue
 Protocol buffer representing the value for an attr used to configure an Op. 
AttrValue.Builder
 Protocol buffer representing the value for an attr used to configure an Op. 
AttrValue.ListValue
 LINT.IfChange
 
Protobuf type tensorflow.AttrValue.ListValue  
AttrValue.ListValue.Builder
 LINT.IfChange
 
Protobuf type tensorflow.AttrValue.ListValue  
AttrValue.ListValueOrBuilder  
AttrValue.ValueCase  
AttrValueOrBuilder  
AttrValueProtos  
AudioSpectrogram Produces a visualization of audio data over time. 
AudioSpectrogram.Options Optional attributes for AudioSpectrogram  
AudioSummary Outputs a `Summary` protocol buffer with audio. 
AudioSummary.Options Optional attributes for AudioSummary  
AutoParallelOptions Protobuf type tensorflow.AutoParallelOptions  
AutoParallelOptions.Builder Protobuf type tensorflow.AutoParallelOptions  
AutoParallelOptionsOrBuilder  
AutoShardDataset Creates a dataset that shards the input dataset. 
AutoShardDataset Creates a dataset that shards the input dataset. 
AutoShardDataset.Options Optional attributes for AutoShardDataset  
AutoShardDataset.Options Optional attributes for AutoShardDataset  
AvailableDeviceInfo
 Matches DeviceAttributes
 
Protobuf type tensorflow.AvailableDeviceInfo  
AvailableDeviceInfo.Builder
 Matches DeviceAttributes
 
Protobuf type tensorflow.AvailableDeviceInfo  
AvailableDeviceInfoOrBuilder  
AvgPool<T extends TNumber> Performs average pooling on the input. 
AvgPool.Options Optional attributes for AvgPool  
AvgPool3d<T extends TNumber> Performs 3D average pooling on the input. 
AvgPool3d.Options Optional attributes for AvgPool3d  
AvgPool3dGrad<T extends TNumber> Computes gradients of average pooling function. 
AvgPool3dGrad.Options Optional attributes for AvgPool3dGrad  
AvgPoolGrad<T extends TNumber> Computes gradients of the average pooling function. 
AvgPoolGrad.Options Optional attributes for AvgPoolGrad  

B

BandedTriangularSolve<T extends TType>  
BandedTriangularSolve.Options Optional attributes for BandedTriangularSolve  
BandPart<T extends TType> Copy a tensor setting everything outside a central band in each innermost matrix to zero. 
Barrier Defines a barrier that persists across different graph executions. 
Barrier.Options Optional attributes for Barrier  
BarrierClose Closes the given barrier. 
BarrierClose.Options Optional attributes for BarrierClose  
BarrierIncompleteSize Computes the number of incomplete elements in the given barrier. 
BarrierInsertMany For each key, assigns the respective value to the specified component. 
BarrierReadySize Computes the number of complete elements in the given barrier. 
BarrierTakeMany Takes the given number of completed elements from a barrier. 
BarrierTakeMany.Options Optional attributes for BarrierTakeMany  
BaseInitializer<T extends TType> Abstract base class for all Initializers  
Batch Batches all input tensors nondeterministically. 
Batch.Options Optional attributes for Batch  
BatchCholesky<T extends TNumber>  
BatchCholeskyGrad<T extends TNumber>  
BatchDataset  
BatchDataset Creates a dataset that batches `batch_size` elements from `input_dataset`. 
BatchDataset.Options Optional attributes for BatchDataset  
BatchFft  
BatchFft2d  
BatchFft3d  
BatchIfft  
BatchIfft2d  
BatchIfft3d  
BatchMatMul<T extends TType> Multiplies slices of two tensors in batches. 
BatchMatMul.Options Optional attributes for BatchMatMul  
BatchMatrixBandPart<T extends TType>  
BatchMatrixDeterminant<T extends TType>  
BatchMatrixDiag<T extends TType>  
BatchMatrixDiagPart<T extends TType>  
BatchMatrixInverse<T extends TNumber>  
BatchMatrixInverse.Options Optional attributes for BatchMatrixInverse  
BatchMatrixSetDiag<T extends TType>  
BatchMatrixSolve<T extends TNumber>  
BatchMatrixSolve.Options Optional attributes for BatchMatrixSolve  
BatchMatrixSolveLs<T extends TNumber>  
BatchMatrixSolveLs.Options Optional attributes for BatchMatrixSolveLs  
BatchMatrixTriangularSolve<T extends TNumber>  
BatchMatrixTriangularSolve.Options Optional attributes for BatchMatrixTriangularSolve  
BatchNormWithGlobalNormalization<T extends TType> Batch normalization. 
BatchNormWithGlobalNormalizationGrad<T extends TType> Gradients for batch normalization. 
BatchSelfAdjointEig<T extends TNumber>  
BatchSelfAdjointEig.Options Optional attributes for BatchSelfAdjointEig  
BatchSvd<T extends TType>  
BatchSvd.Options Optional attributes for BatchSvd  
BatchToSpace<T extends TType> BatchToSpace for 4-D tensors of type T. 
BatchToSpaceNd<T extends TType> BatchToSpace for N-D tensors of type T. 
BenchmarkEntries Protobuf type tensorflow.BenchmarkEntries  
BenchmarkEntries.Builder Protobuf type tensorflow.BenchmarkEntries  
BenchmarkEntriesOrBuilder  
BenchmarkEntry
 Each unit test or benchmark in a test or benchmark run provides
 some set of information. 
BenchmarkEntry.Builder
 Each unit test or benchmark in a test or benchmark run provides
 some set of information. 
BenchmarkEntryOrBuilder  
BesselI0<T extends TNumber>  
BesselI0e<T extends TNumber>  
BesselI1<T extends TNumber>  
BesselI1e<T extends TNumber>  
BesselJ0<T extends TNumber>  
BesselJ1<T extends TNumber>  
BesselK0<T extends TNumber>  
BesselK0e<T extends TNumber>  
BesselK1<T extends TNumber>  
BesselK1e<T extends TNumber>  
BesselY0<T extends TNumber>  
BesselY1<T extends TNumber>  
Betainc<T extends TNumber> Compute the regularized incomplete beta integral \\(I_x(a, b)\\). 
BfcMemoryMapProtos  
Bfloat16Layout Data layout that converts 32-bit floats from/to 16-bit, truncating their mantissa to 7 bits but preserving the 8-bit exponent with the same bias. 
BiasAdd<T extends TType> Adds `bias` to `value`. 
BiasAdd.Options Optional attributes for BiasAdd  
BiasAddGrad<T extends TType> The backward operation for "BiasAdd" on the "bias" tensor. 
BiasAddGrad.Options Optional attributes for BiasAddGrad  
BinaryCrossentropy Computes the cross-entropy loss between true labels and predicted labels. 
BinaryCrossentropy<T extends TNumber> A Metric that computes the binary cross-entropy loss between true labels and predicted labels. 
Bincount<T extends TNumber> Counts the number of occurrences of each value in an integer array. 
BinSummary Protobuf type tensorflow.BinSummary  
BinSummary.Builder Protobuf type tensorflow.BinSummary  
BinSummaryOrBuilder  
Bitcast<U extends TType> Bitcasts a tensor from one type to another without copying data. 
BitwiseAnd<T extends TNumber> Elementwise computes the bitwise AND of `x` and `y`. 
BitwiseOr<T extends TNumber> Elementwise computes the bitwise OR of `x` and `y`. 
BitwiseXor<T extends TNumber> Elementwise computes the bitwise XOR of `x` and `y`. 
BlockLSTM<T extends TNumber> Computes the LSTM cell forward propagation for all the time steps. 
BlockLSTM.Options Optional attributes for BlockLSTM  
BlockLSTMGrad<T extends TNumber> Computes the LSTM cell backward propagation for the entire time sequence. 
BooleanDataBuffer A DataBuffer of booleans. 
BooleanDataLayout<S extends DataBuffer<?>> A DataLayout that converts data stored in a buffer to booleans. 
BooleanDenseNdArray  
BooleanMask  
BooleanMask.Options Optional attributes for BooleanMask  
BooleanMaskUpdate  
BooleanMaskUpdate.Options Optional attributes for BooleanMaskUpdate  
BooleanNdArray An NdArray of booleans. 
BoolLayout Data layout that converts booleans from/to bytes. 
BoostedTreesAggregateStats Aggregates the summary of accumulated stats for the batch. 
BoostedTreesBucketize Bucketize each feature based on bucket boundaries. 
BoostedTreesCalculateBestFeatureSplit Calculates gains for each feature and returns the best possible split information for the feature. 
BoostedTreesCalculateBestFeatureSplit.Options Optional attributes for BoostedTreesCalculateBestFeatureSplit  
BoostedTreesCalculateBestFeatureSplitV2 Calculates gains for each feature and returns the best possible split information for each node. 
BoostedTreesCalculateBestGainsPerFeature Calculates gains for each feature and returns the best possible split information for the feature. 
BoostedTreesCenterBias Calculates the prior from the training data (the bias) and fills in the first node with the logits' prior. 
BoostedTreesCreateEnsemble Creates a tree ensemble model and returns a handle to it. 
BoostedTreesCreateQuantileStreamResource Create the Resource for Quantile Streams. 
BoostedTreesCreateQuantileStreamResource.Options Optional attributes for BoostedTreesCreateQuantileStreamResource  
BoostedTreesDeserializeEnsemble Deserializes a serialized tree ensemble config and replaces current tree

ensemble. 

BoostedTreesEnsembleResourceHandleOp Creates a handle to a BoostedTreesEnsembleResource  
BoostedTreesEnsembleResourceHandleOp.Options Optional attributes for BoostedTreesEnsembleResourceHandleOp  
BoostedTreesExampleDebugOutputs Debugging/model interpretability outputs for each example. 
BoostedTreesFlushQuantileSummaries Flush the quantile summaries from each quantile stream resource. 
BoostedTreesGetEnsembleStates Retrieves the tree ensemble resource stamp token, number of trees and growing statistics. 
BoostedTreesMakeQuantileSummaries Makes the summary of quantiles for the batch. 
BoostedTreesMakeStatsSummary Makes the summary of accumulated stats for the batch. 
BoostedTreesPredict Runs multiple additive regression ensemble predictors on input instances and

computes the logits. 

BoostedTreesQuantileStreamResourceAddSummaries Add the quantile summaries to each quantile stream resource. 
BoostedTreesQuantileStreamResourceDeserialize Deserialize bucket boundaries and ready flag into current QuantileAccumulator. 
BoostedTreesQuantileStreamResourceFlush Flush the summaries for a quantile stream resource. 
BoostedTreesQuantileStreamResourceFlush.Options Optional attributes for BoostedTreesQuantileStreamResourceFlush  
BoostedTreesQuantileStreamResourceGetBucketBoundaries Generate the bucket boundaries for each feature based on accumulated summaries. 
BoostedTreesQuantileStreamResourceHandleOp Creates a handle to a BoostedTreesQuantileStreamResource. 
BoostedTreesQuantileStreamResourceHandleOp.Options Optional attributes for BoostedTreesQuantileStreamResourceHandleOp  
BoostedTreesSerializeEnsemble Serializes the tree ensemble to a proto. 
BoostedTreesSparseAggregateStats Aggregates the summary of accumulated stats for the batch. 
BoostedTreesSparseCalculateBestFeatureSplit Calculates gains for each feature and returns the best possible split information for the feature. 
BoostedTreesSparseCalculateBestFeatureSplit.Options Optional attributes for BoostedTreesSparseCalculateBestFeatureSplit  
BoostedTreesTrainingPredict Runs multiple additive regression ensemble predictors on input instances and

computes the update to cached logits. 

BoostedTreesUpdateEnsemble Updates the tree ensemble by either adding a layer to the last tree being grown

or by starting a new tree. 

BoostedTreesUpdateEnsembleV2 Updates the tree ensemble by adding a layer to the last tree being grown

or by starting a new tree. 

BoostedTreesUpdateEnsembleV2.Options Optional attributes for BoostedTreesUpdateEnsembleV2  
BoundedTensorSpecProto
 A protobuf to represent tf.BoundedTensorSpec. 
BoundedTensorSpecProto.Builder
 A protobuf to represent tf.BoundedTensorSpec. 
BoundedTensorSpecProtoOrBuilder  
BroadcastDynamicShape<T extends TNumber> Return the shape of s0 op s1 with broadcast. 
BroadcastGradientArgs<T extends TNumber> Return the reduction indices for computing gradients of s0 op s1 with broadcast. 
BroadcastHelper<T extends TType> Helper operator for performing XLA-style broadcasts

Broadcasts `lhs` and `rhs` to the same rank, by adding size 1 dimensions to whichever of `lhs` and `rhs` has the lower rank, using XLA's broadcasting rules for binary operators. 

BroadcastRecv<T extends TType> Receives a tensor value broadcast from another device. 
BroadcastRecv.Options Optional attributes for BroadcastRecv  
BroadcastSend<T extends TType> Broadcasts a tensor value to one or more other devices. 
BroadcastSend.Options Optional attributes for BroadcastSend  
BroadcastTo<T extends TType> Broadcast an array for a compatible shape. 
Bucketize Bucketizes 'input' based on 'boundaries'. 
BuildConfiguration Protobuf type tensorflow.BuildConfiguration  
BuildConfiguration.Builder Protobuf type tensorflow.BuildConfiguration  
BuildConfigurationOrBuilder  
BundleEntryProto
 Describes the metadata related to a checkpointed tensor. 
BundleEntryProto.Builder
 Describes the metadata related to a checkpointed tensor. 
BundleEntryProtoOrBuilder  
BundleHeaderProto
 Special header that is associated with a bundle. 
BundleHeaderProto.Builder
 Special header that is associated with a bundle. 
BundleHeaderProto.Endianness
 An enum indicating the endianness of the platform that produced this
 bundle. 
BundleHeaderProtoOrBuilder  
ByteDataBuffer A DataBuffer of bytes. 
ByteDataLayout<S extends DataBuffer<?>> A DataLayout that converts data stored in a buffer to bytes. 
ByteDenseNdArray  
ByteNdArray An NdArray of bytes. 
ByteSequenceProvider<T> Produces sequence of bytes to be stored in a ByteSequenceTensorBuffer
ByteSequenceTensorBuffer Buffer for storing string tensor data. 
BytesList
 Containers to hold repeated fundamental values. 
BytesList.Builder
 Containers to hold repeated fundamental values. 
BytesListOrBuilder  
BytesProducedStatsDataset Records the bytes size of each element of `input_dataset` in a StatsAggregator. 
BytesProducedStatsDataset Records the bytes size of each element of `input_dataset` in a StatsAggregator. 

C

CacheDataset Creates a dataset that caches elements from `input_dataset`. 
CacheDatasetV2  
CallableOptions
 Defines a subgraph in another `GraphDef` as a set of feed points and nodes
 to be fetched or executed. 
CallableOptions.Builder
 Defines a subgraph in another `GraphDef` as a set of feed points and nodes
 to be fetched or executed. 
CallableOptionsOrBuilder  
Cast<U extends TType> Cast x of type SrcT to y of DstT. 
Cast.Options Optional attributes for Cast  
CastHelper A helper class for casting an Operand  
CategoricalCrossentropy Computes the crossentropy loss between the labels and predictions. 
CategoricalCrossentropy<T extends TNumber> A Metric that computes the categorical cross-entropy loss between true labels and predicted labels. 
CategoricalHinge Computes the categorical hinge loss between labels and predictions. 
CategoricalHinge<T extends TNumber> A Metric that computes the categorical hinge loss metric between labels and predictions. 
Ceil<T extends TNumber> Returns element-wise smallest integer not less than x. 
CheckNumerics<T extends TNumber> Checks a tensor for NaN, -Inf and +Inf values. 
Cholesky<T extends TType> Computes the Cholesky decomposition of one or more square matrices. 
CholeskyGrad<T extends TNumber> Computes the reverse mode backpropagated gradient of the Cholesky algorithm. 
ChooseFastestDataset  
ChooseFastestDataset  
ClipByValue<T extends TType> Clips tensor values to a specified min and max. 
CloseSummaryWriter  
ClusterDef
 Defines a TensorFlow cluster as a set of jobs. 
ClusterDef.Builder
 Defines a TensorFlow cluster as a set of jobs. 
ClusterDefOrBuilder  
ClusterDeviceFilters
 Defines the device filters for jobs in a cluster. 
ClusterDeviceFilters.Builder
 Defines the device filters for jobs in a cluster. 
ClusterDeviceFiltersOrBuilder  
ClusterOutput<T extends TType> Operator that connects the output of an XLA computation to other consumer graph nodes. 
ClusterProtos  
Code
 The canonical error codes for TensorFlow APIs. 
CodeLocation
 Code location information: A stack trace with host-name information. 
CodeLocation.Builder
 Code location information: A stack trace with host-name information. 
CodeLocationOrBuilder  
CollectionDef
 CollectionDef should cover most collections. 
CollectionDef.AnyList
 AnyList is used for collecting Any protos. 
CollectionDef.AnyList.Builder
 AnyList is used for collecting Any protos. 
CollectionDef.AnyListOrBuilder  
CollectionDef.Builder
 CollectionDef should cover most collections. 
CollectionDef.BytesList
 BytesList is used for collecting strings and serialized protobufs. 
CollectionDef.BytesList.Builder
 BytesList is used for collecting strings and serialized protobufs. 
CollectionDef.BytesListOrBuilder  
CollectionDef.FloatList
 FloatList is used for collecting float values. 
CollectionDef.FloatList.Builder
 FloatList is used for collecting float values. 
CollectionDef.FloatListOrBuilder  
CollectionDef.Int64List
 Int64List is used for collecting int, int64 and long values. 
CollectionDef.Int64List.Builder
 Int64List is used for collecting int, int64 and long values. 
CollectionDef.Int64ListOrBuilder  
CollectionDef.KindCase  
CollectionDef.NodeList
 NodeList is used for collecting nodes in graph. 
CollectionDef.NodeList.Builder
 NodeList is used for collecting nodes in graph. 
CollectionDef.NodeListOrBuilder  
CollectionDefOrBuilder  
CollectiveGather<T extends TNumber> Mutually accumulates multiple tensors of identical type and shape. 
CollectiveGather.Options Optional attributes for CollectiveGather  
CollectivePermute<T extends TType> An Op to permute tensors across replicated TPU instances. 
CombinedNonMaxSuppression Greedily selects a subset of bounding boxes in descending order of score,

This operation performs non_max_suppression on the inputs per batch, across all classes. 

CombinedNonMaxSuppression.Options Optional attributes for CombinedNonMaxSuppression  
CommitId Protobuf type tensorflow.CommitId  
CommitId.Builder Protobuf type tensorflow.CommitId  
CommitId.KindCase  
CommitIdOrBuilder  
CompareAndBitpack Compare values of `input` to `threshold` and pack resulting bits into a `uint8`. 
CompilationResult Returns the result of a TPU compilation. 
CompileSucceededAssert Asserts that compilation succeeded. 
Complex<U extends TType> Converts two real numbers to a complex number. 
ComplexAbs<U extends TNumber> Computes the complex absolute value of a tensor. 
CompressElement Compresses a dataset element. 
Compute_func_Pointer_TF_OpKernelContext  
ComputeAccidentalHits Computes the ids of the positions in sampled_candidates that match true_labels. 
ComputeAccidentalHits.Options Optional attributes for ComputeAccidentalHits  
ComputeBatchSize Computes the static batch size of a dataset sans partial batches. 
Concat<T extends TType> Concatenates tensors along one dimension. 
ConcatenateDataset Creates a dataset that concatenates `input_dataset` with `another_dataset`. 
ConcreteFunction A graph that can be invoked as a single function, with an input and output signature. 
CondContextDef
 Protocol buffer representing a CondContext object. 
CondContextDef.Builder
 Protocol buffer representing a CondContext object. 
CondContextDefOrBuilder  
ConditionalAccumulator A conditional accumulator for aggregating gradients. 
ConditionalAccumulator.Options Optional attributes for ConditionalAccumulator  
ConfigProto
 Session configuration parameters. 
ConfigProto.Builder
 Session configuration parameters. 
ConfigProto.Experimental
 Everything inside Experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat. 
ConfigProto.Experimental.Builder
 Everything inside Experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat. 
ConfigProto.Experimental.MlirBridgeRollout
 An enum that describes the state of the MLIR bridge rollout. 
ConfigProto.ExperimentalOrBuilder  
ConfigProtoOrBuilder  
ConfigProtos  
ConfigureDistributedTPU Sets up the centralized structures for a distributed TPU system. 
ConfigureDistributedTPU.Options Optional attributes for ConfigureDistributedTPU  
ConfigureTPUEmbedding Sets up TPUEmbedding in a distributed TPU system. 
Conj<T extends TType> Returns the complex conjugate of a complex number. 
ConjugateTranspose<T extends TType> Shuffle dimensions of x according to a permutation and conjugate the result. 
Constant<T extends TType> Initializer that generates tensors with a constant value. 
Constant<T extends TType> An operator producing a constant value. 
Constraint Base class for Constraints. 
ConsumeMutexLock This op consumes a lock created by `MutexLock`. 
ControlFlowContextDef
 Container for any kind of control flow context. 
ControlFlowContextDef.Builder
 Container for any kind of control flow context. 
ControlFlowContextDef.CtxtCase  
ControlFlowContextDefOrBuilder  
ControlFlowProtos  
ControlTrigger Does nothing. 
Conv<T extends TType> Wraps the XLA ConvGeneralDilated operator, documented at

https://www.tensorflow.org/performance/xla/operation_semantics#conv_convolution . 

Conv2d<T extends TNumber> Computes a 2-D convolution given 4-D `input` and `filter` tensors. 
Conv2d.Options Optional attributes for Conv2d  
Conv2dBackpropFilter<T extends TNumber> Computes the gradients of convolution with respect to the filter. 
Conv2dBackpropFilter.Options Optional attributes for Conv2dBackpropFilter  
Conv2dBackpropInput<T extends TNumber> Computes the gradients of convolution with respect to the input. 
Conv2dBackpropInput.Options Optional attributes for Conv2dBackpropInput  
Conv3d<T extends TNumber> Computes a 3-D convolution given 5-D `input` and `filter` tensors. 
Conv3d.Options Optional attributes for Conv3d  
Conv3dBackpropFilter<T extends TNumber> Computes the gradients of 3-D convolution with respect to the filter. 
Conv3dBackpropFilter.Options Optional attributes for Conv3dBackpropFilter  
Conv3dBackpropInput<U extends TNumber> Computes the gradients of 3-D convolution with respect to the input. 
Conv3dBackpropInput.Options Optional attributes for Conv3dBackpropInput  
Copy<T extends TType> Copy a tensor from CPU-to-CPU or GPU-to-GPU. 
Copy.Options Optional attributes for Copy  
CopyHost<T extends TType> Copy a tensor to host. 
CopyHost.Options Optional attributes for CopyHost  
Cos<T extends TType> Computes cos of x element-wise. 
Cosh<T extends TType> Computes hyperbolic cosine of x element-wise. 
CosineSimilarity Computes the cosine similarity between labels and predictions. 
CosineSimilarity<T extends TNumber> A metric that computes the cosine similarity metric between labels and predictions. 
CostGraphDef Protobuf type tensorflow.CostGraphDef  
CostGraphDef.AggregatedCost
 Total cost of this graph, typically used for balancing decisions. 
CostGraphDef.AggregatedCost.Builder
 Total cost of this graph, typically used for balancing decisions. 
CostGraphDef.AggregatedCostOrBuilder  
CostGraphDef.Builder Protobuf type tensorflow.CostGraphDef  
CostGraphDef.Node Protobuf type tensorflow.CostGraphDef.Node  
CostGraphDef.Node.Builder Protobuf type tensorflow.CostGraphDef.Node  
CostGraphDef.Node.InputInfo
 Inputs of this node. 
CostGraphDef.Node.InputInfo.Builder
 Inputs of this node. 
CostGraphDef.Node.InputInfoOrBuilder  
CostGraphDef.Node.OutputInfo
 Outputs of this node. 
CostGraphDef.Node.OutputInfo.Builder
 Outputs of this node. 
CostGraphDef.Node.OutputInfoOrBuilder  
CostGraphDef.NodeOrBuilder  
CostGraphDefOrBuilder  
CostGraphProtos  
CountUpTo<T extends TNumber> Increments 'ref' until it reaches 'limit'. 
CPUInfo Protobuf type tensorflow.CPUInfo  
CPUInfo.Builder Protobuf type tensorflow.CPUInfo  
CPUInfoOrBuilder  
Create_func_TF_OpKernelConstruction  
CreateSummaryDbWriter  
CreateSummaryFileWriter  
CropAndResize Extracts crops from the input image tensor and resizes them. 
CropAndResize.Options Optional attributes for CropAndResize  
CropAndResizeGradBoxes Computes the gradient of the crop_and_resize op wrt the input boxes tensor. 
CropAndResizeGradBoxes.Options Optional attributes for CropAndResizeGradBoxes  
CropAndResizeGradImage<T extends TNumber> Computes the gradient of the crop_and_resize op wrt the input image tensor. 
CropAndResizeGradImage.Options Optional attributes for CropAndResizeGradImage  
Cross<T extends TNumber> Compute the pairwise cross product. 
CrossReplicaSum<T extends TNumber> An Op to sum inputs across replicated TPU instances. 
CSRSparseMatrixComponents<T extends TType> Reads out the CSR components at batch `index`. 
CSRSparseMatrixToDense<T extends TType> Convert a (possibly batched) CSRSparseMatrix to dense. 
CSRSparseMatrixToSparseTensor<T extends TType> Converts a (possibly batched) CSRSparesMatrix to a SparseTensor. 
CSVDataset  
CSVDataset  
CSVDatasetV2  
CtcBeamSearchDecoder<T extends TNumber> Performs beam search decoding on the logits given in input. 
CtcBeamSearchDecoder.Options Optional attributes for CtcBeamSearchDecoder  
CtcGreedyDecoder<T extends TNumber> Performs greedy decoding on the logits given in inputs. 
CtcGreedyDecoder.Options Optional attributes for CtcGreedyDecoder  
CtcLoss<T extends TNumber> Calculates the CTC Loss (log probability) for each batch entry. 
CtcLoss.Options Optional attributes for CtcLoss  
CTCLossV2 Calculates the CTC Loss (log probability) for each batch entry. 
CTCLossV2.Options Optional attributes for CTCLossV2  
CudnnRNN<T extends TNumber> A RNN backed by cuDNN. 
CudnnRNN.Options Optional attributes for CudnnRNN  
CudnnRNNBackprop<T extends TNumber> Backprop step of CudnnRNNV3. 
CudnnRNNBackprop.Options Optional attributes for CudnnRNNBackprop  
CudnnRNNCanonicalToParams<T extends TNumber> Converts CudnnRNN params from canonical form to usable form. 
CudnnRNNCanonicalToParams.Options Optional attributes for CudnnRNNCanonicalToParams  
CudnnRnnParamsSize<U extends TNumber> Computes size of weights that can be used by a Cudnn RNN model. 
CudnnRnnParamsSize.Options Optional attributes for CudnnRnnParamsSize  
CudnnRNNParamsToCanonical<T extends TNumber> Retrieves CudnnRNN params in canonical form. 
CudnnRNNParamsToCanonical.Options Optional attributes for CudnnRNNParamsToCanonical  
Cumprod<T extends TType> Compute the cumulative product of the tensor `x` along `axis`. 
Cumprod.Options Optional attributes for Cumprod  
Cumsum<T extends TType> Compute the cumulative sum of the tensor `x` along `axis`. 
Cumsum.Options Optional attributes for Cumsum  
CumulativeLogsumexp<T extends TNumber> Compute the cumulative product of the tensor `x` along `axis`. 
CumulativeLogsumexp.Options Optional attributes for CumulativeLogsumexp  

D

DataBuffer<T> A container of data of a specific type. 
DataBufferAdapterFactory Factory of data buffer adapters. 
DataBuffers Helper class for creating DataBuffer instances. 
DataBufferWindow<B extends DataBuffer<?>> A mutable container for viewing part of a DataBuffer
DataClass Protobuf enum tensorflow.DataClass  
DataFormatDimMap<T extends TNumber> Returns the dimension index in the destination data format given the one in

the source data format. 

DataFormatDimMap.Options Optional attributes for DataFormatDimMap  
DataFormatVecPermute<T extends TNumber> Permute input tensor from `src_format` to `dst_format`. 
DataFormatVecPermute.Options Optional attributes for DataFormatVecPermute  
DataLayout<S extends DataBuffer<?>, T> Converts data stored in a buffer to a given type. 
DataLayouts Exposes DataLayout instances of data formats frequently used in linear algebra computation. 
DataServiceDataset  
DataServiceDataset.Options Optional attributes for DataServiceDataset  
Dataset Represents a potentially large list of independent elements (samples), and allows iteration and transformations to be performed across these elements. 
DatasetCardinality Returns the cardinality of `input_dataset`. 
DatasetCardinality Returns the cardinality of `input_dataset`. 
DatasetFromGraph Creates a dataset from the given `graph_def`. 
DatasetIterator Represents the state of an iteration through a tf.data Datset. 
DatasetOptional An optional represents the result of a dataset getNext operation that may fail, when the end of the dataset has been reached. 
DatasetToGraph Returns a serialized GraphDef representing `input_dataset`. 
DatasetToGraph.Options Optional attributes for DatasetToGraph  
DatasetToSingleElement Outputs the single element from the given dataset. 
DatasetToTfRecord Writes the given dataset to the given file using the TFRecord format. 
DatasetToTFRecord Writes the given dataset to the given file using the TFRecord format. 
DataStorageVisitor<R> Visit the backing storage of DataBuffer instances. 
DataType
 (== suppress_warning documentation-presence ==)
 LINT.IfChange
 
Protobuf enum tensorflow.DataType  
Dawsn<T extends TNumber>  
Deallocator_Pointer_long_Pointer  
DebugEvent
 An Event related to the debugging of a TensorFlow program. 
DebugEvent.Builder
 An Event related to the debugging of a TensorFlow program. 
DebugEvent.WhatCase  
DebugEventOrBuilder  
DebugEventProtos  
DebuggedDevice
 A device on which ops and/or tensors are instrumented by the debugger. 
DebuggedDevice.Builder
 A device on which ops and/or tensors are instrumented by the debugger. 
DebuggedDeviceOrBuilder  
DebuggedGraph
 A debugger-instrumented graph. 
DebuggedGraph.Builder
 A debugger-instrumented graph. 
DebuggedGraphOrBuilder  
DebuggedSourceFile Protobuf type tensorflow.DebuggedSourceFile  
DebuggedSourceFile.Builder Protobuf type tensorflow.DebuggedSourceFile  
DebuggedSourceFileOrBuilder  
DebuggedSourceFiles Protobuf type tensorflow.DebuggedSourceFiles  
DebuggedSourceFiles.Builder Protobuf type tensorflow.DebuggedSourceFiles  
DebuggedSourceFilesOrBuilder  
DebugGradientIdentity<T extends TType> Identity op for gradient debugging. 
DebugGradientRefIdentity<T extends TType> Identity op for gradient debugging. 
DebugIdentity<T extends TType> Debug Identity V2 Op. 
DebugIdentity.Options Optional attributes for DebugIdentity  
DebugMetadata
 Metadata about the debugger and the debugged TensorFlow program. 
DebugMetadata.Builder
 Metadata about the debugger and the debugged TensorFlow program. 
DebugMetadataOrBuilder  
DebugNanCount Debug NaN Value Counter Op. 
DebugNanCount.Options Optional attributes for DebugNanCount  
DebugNumericsSummary<U extends TNumber> Debug Numeric Summary V2 Op. 
DebugNumericsSummary.Options Optional attributes for DebugNumericsSummary  
DebugOptions
 Options for initializing DebuggerState in TensorFlow Debugger (tfdbg). 
DebugOptions.Builder
 Options for initializing DebuggerState in TensorFlow Debugger (tfdbg). 
DebugOptionsOrBuilder  
DebugProtos  
DebugTensorWatch
 Option for watching a node in TensorFlow Debugger (tfdbg). 
DebugTensorWatch.Builder
 Option for watching a node in TensorFlow Debugger (tfdbg). 
DebugTensorWatchOrBuilder  
DecodeAndCropJpeg Decode and Crop a JPEG-encoded image to a uint8 tensor. 
DecodeAndCropJpeg.Options Optional attributes for DecodeAndCropJpeg  
DecodeBase64 Decode web-safe base64-encoded strings. 
DecodeBmp Decode the first frame of a BMP-encoded image to a uint8 tensor. 
DecodeBmp.Options Optional attributes for DecodeBmp  
DecodeCompressed Decompress strings. 
DecodeCompressed.Options Optional attributes for DecodeCompressed  
DecodeCsv Convert CSV records to tensors. 
DecodeCsv.Options Optional attributes for DecodeCsv  
DecodeGif Decode the frame(s) of a GIF-encoded image to a uint8 tensor. 
DecodeImage<T extends TNumber> Function for decode_bmp, decode_gif, decode_jpeg, and decode_png. 
DecodeImage.Options Optional attributes for DecodeImage  
DecodeJpeg Decode a JPEG-encoded image to a uint8 tensor. 
DecodeJpeg.Options Optional attributes for DecodeJpeg  
DecodeJsonExample Convert JSON-encoded Example records to binary protocol buffer strings. 
DecodePaddedRaw<T extends TNumber> Reinterpret the bytes of a string as a vector of numbers. 
DecodePaddedRaw.Options Optional attributes for DecodePaddedRaw  
DecodePng<T extends TNumber> Decode a PNG-encoded image to a uint8 or uint16 tensor. 
DecodePng.Options Optional attributes for DecodePng  
DecodeProto The op extracts fields from a serialized protocol buffers message into tensors. 
DecodeProto.Options Optional attributes for DecodeProto  
DecodeRaw<T extends TType> Reinterpret the bytes of a string as a vector of numbers. 
DecodeRaw.Options Optional attributes for DecodeRaw  
DecodeWav Decode a 16-bit PCM WAV file to a float tensor. 
DecodeWav.Options Optional attributes for DecodeWav  
DeepCopy<T extends TType> Makes a copy of `x`. 
Delete_func_Pointer  
DeleteIterator A container for an iterator resource. 
DeleteMemoryCache  
DeleteMultiDeviceIterator A container for an iterator resource. 
DeleteRandomSeedGenerator  
DeleteSeedGenerator  
DeleteSessionTensor Delete the tensor specified by its handle in the session. 
DenseBincount<U extends TNumber> Counts the number of occurrences of each value in an integer array. 
DenseBincount.Options Optional attributes for DenseBincount  
DenseCountSparseOutput<U extends TNumber> Performs sparse-output bin counting for a tf.tensor input. 
DenseCountSparseOutput.Options Optional attributes for DenseCountSparseOutput  
DenseNdArray<T>  
DenseToCSRSparseMatrix Converts a dense tensor to a (possibly batched) CSRSparseMatrix. 
DenseToDenseSetOperation<T extends TType> Applies set operation along last dimension of 2 `Tensor` inputs. 
DenseToDenseSetOperation.Options Optional attributes for DenseToDenseSetOperation  
DenseToSparseBatchDataset Creates a dataset that batches input elements into a SparseTensor. 
DenseToSparseBatchDataset Creates a dataset that batches input elements into a SparseTensor. 
DenseToSparseSetOperation<T extends TType> Applies set operation along last dimension of `Tensor` and `SparseTensor`. 
DenseToSparseSetOperation.Options Optional attributes for DenseToSparseSetOperation  
DepthToSpace<T extends TType> DepthToSpace for tensors of type T. 
DepthToSpace.Options Optional attributes for DepthToSpace  
DepthwiseConv2dNative<T extends TNumber> Computes a 2-D depthwise convolution given 4-D `input` and `filter` tensors. 
DepthwiseConv2dNative.Options Optional attributes for DepthwiseConv2dNative  
DepthwiseConv2dNativeBackpropFilter<T extends TNumber> Computes the gradients of depthwise convolution with respect to the filter. 
DepthwiseConv2dNativeBackpropFilter.Options Optional attributes for DepthwiseConv2dNativeBackpropFilter  
DepthwiseConv2dNativeBackpropInput<T extends TNumber> Computes the gradients of depthwise convolution with respect to the input. 
DepthwiseConv2dNativeBackpropInput.Options Optional attributes for DepthwiseConv2dNativeBackpropInput  
Dequantize<U extends TNumber> Dequantize the 'input' tensor into a float or bfloat16 Tensor. 
Dequantize Takes the packed uint32 input and unpacks the input to uint8 to do

Dequantization on device. 

Dequantize.Options Optional attributes for Dequantize  
DeserializeIterator Converts the given variant tensor to an iterator and stores it in the given resource. 
DeserializeManySparse<T extends TType> Deserialize and concatenate `SparseTensors` from a serialized minibatch. 
DeserializeSparse<U extends TType> Deserialize `SparseTensor` objects. 
DestroyResourceOp Deletes the resource specified by the handle. 
DestroyResourceOp.Options Optional attributes for DestroyResourceOp  
DestroyTemporaryVariable<T extends TType> Destroys the temporary variable and returns its final value. 
Det<T extends TType> Computes the determinant of one or more square matrices. 
DeviceAttributes Protobuf type tensorflow.DeviceAttributes  
DeviceAttributes.Builder Protobuf type tensorflow.DeviceAttributes  
DeviceAttributesOrBuilder  
DeviceAttributesProtos  
DeviceFiltersProtos  
DeviceIndex Return the index of device the op runs. 
DeviceLocality Protobuf type tensorflow.DeviceLocality  
DeviceLocality.Builder Protobuf type tensorflow.DeviceLocality  
DeviceLocalityOrBuilder  
DeviceProperties Protobuf type tensorflow.DeviceProperties  
DeviceProperties.Builder Protobuf type tensorflow.DeviceProperties  
DevicePropertiesOrBuilder  
DevicePropertiesProtos  
DeviceSpec Represents a (possibly partial) specification for a TensorFlow device. 
DeviceSpec.Builder A Builder class for building DeviceSpec class. 
DeviceSpec.DeviceType  
DeviceStepStats Protobuf type tensorflow.DeviceStepStats  
DeviceStepStats.Builder Protobuf type tensorflow.DeviceStepStats  
DeviceStepStatsOrBuilder  
DictValue
 Represents a Python dict keyed by `str`. 
DictValue.Builder
 Represents a Python dict keyed by `str`. 
DictValueOrBuilder  
Digamma<T extends TNumber> Computes Psi, the derivative of Lgamma (the log of the absolute value of

`Gamma(x)`), element-wise. 

Dilation2d<T extends TNumber> Computes the grayscale dilation of 4-D `input` and 3-D `filter` tensors. 
Dilation2dBackpropFilter<T extends TNumber> Computes the gradient of morphological 2-D dilation with respect to the filter. 
Dilation2dBackpropInput<T extends TNumber> Computes the gradient of morphological 2-D dilation with respect to the input. 
Dimension  
DimensionalSpace  
DirectedInterleaveDataset A substitute for `InterleaveDataset` on a fixed list of `N` datasets. 
DirectedInterleaveDataset A substitute for `InterleaveDataset` on a fixed list of `N` datasets. 
Div<T extends TType> Returns x / y element-wise. 
DivNoNan<T extends TType> Returns 0 if the denominator is zero. 
Dot<T extends TType> Wraps the XLA DotGeneral operator, documented at

https://www.tensorflow.org/performance/xla/operation_semantics#dotgeneral . 

DoubleDataBuffer A DataBuffer of doubles. 
DoubleDataLayout<S extends DataBuffer<?>> A DataLayout that converts data stored in a buffer to doubles. 
DoubleDenseNdArray  
DoubleNdArray An NdArray of doubles. 
DrawBoundingBoxes<T extends TNumber> Draw bounding boxes on a batch of images. 
DummyIterationCounter  
DummyMemoryCache  
DummySeedGenerator  
DynamicPartition<T extends TType> Partitions `data` into `num_partitions` tensors using indices from `partitions`. 
DynamicSlice<T extends TType> Wraps the XLA DynamicSlice operator, documented at

https://www.tensorflow.org/performance/xla/operation_semantics#dynamicslice . 

DynamicStitch<T extends TType> Interleave the values from the `data` tensors into a single tensor. 
DynamicUpdateSlice<T extends TType> Wraps the XLA DynamicUpdateSlice operator, documented at

https://www.tensorflow.org/performance/xla/operation_semantics#dynamicupdateslice . 

E

EagerSession An environment for executing TensorFlow operations eagerly. 
EagerSession.DevicePlacementPolicy Controls how to act when we try to run an operation on a given device but some input tensors are not on that device. 
EagerSession.Options  
EditDistance Computes the (possibly normalized) Levenshtein Edit Distance. 
EditDistance.Options Optional attributes for EditDistance  
Eig<U extends TType> Computes the eigen decomposition of one or more square matrices. 
Eig.Options Optional attributes for Eig  
Einsum<T extends TType> Tensor contraction according to Einstein summation convention. 
Einsum<T extends TType> An op which supports basic einsum op with 2 inputs and 1 output. 
Elu<T extends TNumber> Computes exponential linear: `exp(features) - 1` if < 0, `features` otherwise. 
ELU<T extends TFloating> Exponential linear unit. 
EluGrad<T extends TNumber> Computes gradients for the exponential linear (Elu) operation. 
EmbeddingActivations An op enabling differentiation of TPU Embeddings. 
Empty<T extends TType> Creates a tensor with the given shape. 
Empty.Options Optional attributes for Empty  
EmptyTensorList Creates and returns an empty tensor list. 
EmptyTensorMap Creates and returns an empty tensor map. 
EncodeBase64 Encode strings into web-safe base64 format. 
EncodeBase64.Options Optional attributes for EncodeBase64  
EncodeJpeg JPEG-encode an image. 
EncodeJpeg.Options Optional attributes for EncodeJpeg  
EncodeJpegVariableQuality JPEG encode input image with provided compression quality. 
EncodePng PNG-encode an image. 
EncodePng.Options Optional attributes for EncodePng  
EncodeProto The op serializes protobuf messages provided in the input tensors. 
EncodeProto.Options Optional attributes for EncodeProto  
EncodeWav Encode audio data using the WAV file format. 
Endpoint Annotation used to mark a method of a class annotated with @Operator that should generate an endpoint into ERROR(Ops/org.tensorflow.op.Ops Ops) or one of its groups. 
EnqueueTPUEmbeddingIntegerBatch An op that enqueues a list of input batch tensors to TPUEmbedding. 
EnqueueTPUEmbeddingIntegerBatch.Options Optional attributes for EnqueueTPUEmbeddingIntegerBatch  
EnqueueTPUEmbeddingRaggedTensorBatch Eases the porting of code that uses tf.nn.embedding_lookup(). 
EnqueueTPUEmbeddingRaggedTensorBatch.Options Optional attributes for EnqueueTPUEmbeddingRaggedTensorBatch  
EnqueueTPUEmbeddingSparseBatch An op that enqueues TPUEmbedding input indices from a SparseTensor. 
EnqueueTPUEmbeddingSparseBatch.Options Optional attributes for EnqueueTPUEmbeddingSparseBatch  
EnqueueTPUEmbeddingSparseTensorBatch Eases the porting of code that uses tf.nn.embedding_lookup_sparse(). 
EnqueueTPUEmbeddingSparseTensorBatch.Options Optional attributes for EnqueueTPUEmbeddingSparseTensorBatch  
EnsureShape<T extends TType> Ensures that the tensor's shape matches the expected shape. 
Enter<T extends TType> Creates or finds a child frame, and makes `data` available to the child frame. 
Enter.Options Optional attributes for Enter  
EntryValue Protobuf type tensorflow.EntryValue  
EntryValue.Builder Protobuf type tensorflow.EntryValue  
EntryValue.KindCase  
EntryValueOrBuilder  
Equal Returns the truth value of (x == y) element-wise. 
Equal.Options Optional attributes for Equal  
Erf<T extends TNumber> Computes the Gauss error function of `x` element-wise. 
Erfc<T extends TNumber> Computes the complementary error function of `x` element-wise. 
erfinv<T extends TNumber>  
ErrorCodes  
ErrorCodesProtos  
EuclideanNorm<T extends TType> Computes the euclidean norm of elements across dimensions of a tensor. 
EuclideanNorm.Options Optional attributes for EuclideanNorm  
Event
 Protocol buffer representing an event that happened during
 the execution of a Brain model. 
Event.Builder
 Protocol buffer representing an event that happened during
 the execution of a Brain model. 
Event.WhatCase  
EventOrBuilder  
EventProtos  
Example Protobuf type tensorflow.Example  
Example.Builder Protobuf type tensorflow.Example  
ExampleOrBuilder  
ExampleParserConfiguration Protobuf type tensorflow.ExampleParserConfiguration  
ExampleParserConfiguration.Builder Protobuf type tensorflow.ExampleParserConfiguration  
ExampleParserConfigurationOrBuilder  
ExampleParserConfigurationProtos  
ExampleProtos  
Execute Op that loads and executes a TPU program on a TPU device. 
ExecuteAndUpdateVariables Op that executes a program with optional in-place variable updates. 
Execution
 Data relating to the eager execution of an op or a Graph. 
Execution.Builder
 Data relating to the eager execution of an op or a Graph. 
ExecutionEnvironment Defines an environment for creating and executing TensorFlow Operations. 
ExecutionEnvironment.Types  
ExecutionOrBuilder  
Exit<T extends TType> Exits the current frame to its parent frame. 
Exp<T extends TType> Computes exponential of x element-wise. 
ExpandDims<T extends TType> Inserts a dimension of 1 into a tensor's shape. 
Expint<T extends TNumber>  
Expm1<T extends TType> Computes `exp(x) - 1` element-wise. 
Exponential<T extends TFloating> Exponential activation function. 
ExtractGlimpse Extracts a glimpse from the input tensor. 
ExtractGlimpse.Options Optional attributes for ExtractGlimpse  
ExtractImagePatches<T extends TType> Extract `patches` from `images` and put them in the "depth" output dimension. 
ExtractJpegShape<T extends TNumber> Extract the shape information of a JPEG-encoded image. 
ExtractVolumePatches<T extends TNumber> Extract `patches` from `input` and put them in the `"depth"` output dimension. 

F

Fact Output a fact about factorials. 
FakeQuantWithMinMaxArgs Fake-quantize the 'inputs' tensor, type float to 'outputs' tensor of same type. 
FakeQuantWithMinMaxArgs.Options Optional attributes for FakeQuantWithMinMaxArgs  
FakeQuantWithMinMaxArgsGradient Compute gradients for a FakeQuantWithMinMaxArgs operation. 
FakeQuantWithMinMaxArgsGradient.Options Optional attributes for FakeQuantWithMinMaxArgsGradient  
FakeQuantWithMinMaxVars Fake-quantize the 'inputs' tensor of type float via global float scalars

Fake-quantize the `inputs` tensor of type float via global float scalars `min` and `max` to `outputs` tensor of same shape as `inputs`. 

FakeQuantWithMinMaxVars.Options Optional attributes for FakeQuantWithMinMaxVars  
FakeQuantWithMinMaxVarsGradient Compute gradients for a FakeQuantWithMinMaxVars operation. 
FakeQuantWithMinMaxVarsGradient.Options Optional attributes for FakeQuantWithMinMaxVarsGradient  
FakeQuantWithMinMaxVarsPerChannel Fake-quantize the 'inputs' tensor of type float via per-channel floats

Fake-quantize the `inputs` tensor of type float per-channel and one of the shapes: `[d]`, `[b, d]` `[b, h, w, d]` via per-channel floats `min` and `max` of shape `[d]` to `outputs` tensor of same shape as `inputs`. 

FakeQuantWithMinMaxVarsPerChannel.Options Optional attributes for FakeQuantWithMinMaxVarsPerChannel  
FakeQuantWithMinMaxVarsPerChannelGradient Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation. 
FakeQuantWithMinMaxVarsPerChannelGradient.Options Optional attributes for FakeQuantWithMinMaxVarsPerChannelGradient  
FastElementSequence<T, U extends NdArray<T>> A sequence recycling the same NdArray instance when iterating its elements 
Feature
 Containers for non-sequential data. 
Feature.Builder
 Containers for non-sequential data. 
Feature.KindCase  
FeatureConfiguration Protobuf type tensorflow.FeatureConfiguration  
FeatureConfiguration.Builder Protobuf type tensorflow.FeatureConfiguration  
FeatureConfiguration.ConfigCase  
FeatureConfigurationOrBuilder  
FeatureList
 Containers for sequential data. 
FeatureList.Builder
 Containers for sequential data. 
FeatureListOrBuilder  
FeatureLists Protobuf type tensorflow.FeatureLists  
FeatureLists.Builder Protobuf type tensorflow.FeatureLists  
FeatureListsOrBuilder  
FeatureOrBuilder  
FeatureProtos  
Features Protobuf type tensorflow.Features  
Features.Builder Protobuf type tensorflow.Features  
FeaturesOrBuilder  
Fft<T extends TType> Fast Fourier transform. 
Fft2d<T extends TType> 2D fast Fourier transform. 
Fft3d<T extends TType> 3D fast Fourier transform. 
FifoQueue A queue that produces elements in first-in first-out order. 
FifoQueue.Options Optional attributes for FifoQueue  
Fill<U extends TType> Creates a tensor filled with a scalar value. 
FilterByLastComponentDataset Creates a dataset containing elements of first component of `input_dataset` having true in the last component. 
Fingerprint Generates fingerprint values. 
FixedLenFeatureProto Protobuf type tensorflow.FixedLenFeatureProto  
FixedLenFeatureProto.Builder Protobuf type tensorflow.FixedLenFeatureProto  
FixedLenFeatureProtoOrBuilder  
FixedLengthRecordDataset  
FixedLengthRecordReader A Reader that outputs fixed-length records from a file. 
FixedLengthRecordReader.Options Optional attributes for FixedLengthRecordReader  
FixedUnigramCandidateSampler Generates labels for candidate sampling with a learned unigram distribution. 
FixedUnigramCandidateSampler.Options Optional attributes for FixedUnigramCandidateSampler  
Float16Layout Data layout that converts 32-bit floats from/to 16-bit, accordingly to the IEEE-754 half-precision floating point specification. 
FloatDataBuffer A DataBuffer of floats. 
FloatDataLayout<S extends DataBuffer<?>> A DataLayout that converts data stored in a buffer to floats. 
FloatDenseNdArray  
FloatList Protobuf type tensorflow.FloatList  
FloatList.Builder Protobuf type tensorflow.FloatList  
FloatListOrBuilder  
FloatNdArray An NdArray of floats. 
Floor<T extends TNumber> Returns element-wise largest integer not greater than x. 
FloorDiv<T extends TType> Returns x // y element-wise. 
FloorMod<T extends TNumber> Returns element-wise remainder of division. 
FlushSummaryWriter  
FractionalAvgPool<T extends TNumber> Performs fractional average pooling on the input. 
FractionalAvgPool.Options Optional attributes for FractionalAvgPool  
FractionalAvgPoolGrad<T extends TNumber> Computes gradient of the FractionalAvgPool function. 
FractionalAvgPoolGrad.Options Optional attributes for FractionalAvgPoolGrad  
FractionalMaxPool<T extends TNumber> Performs fractional max pooling on the input. 
FractionalMaxPool.Options Optional attributes for FractionalMaxPool  
FractionalMaxPoolGrad<T extends TNumber> Computes gradient of the FractionalMaxPool function. 
FractionalMaxPoolGrad.Options Optional attributes for FractionalMaxPoolGrad  
FresnelCos<T extends TNumber>  
FresnelSin<T extends TNumber>  
Ftrl Optimizer that implements the FTRL algorithm. 
FunctionDef
 A function can be instantiated when the runtime can bind every attr
 with a value. 
FunctionDef.ArgAttrs
 Attributes for function arguments. 
FunctionDef.ArgAttrs.Builder
 Attributes for function arguments. 
FunctionDef.ArgAttrsOrBuilder  
FunctionDef.Builder
 A function can be instantiated when the runtime can bind every attr
 with a value. 
FunctionDefLibrary
 A library is a set of named functions. 
FunctionDefLibrary.Builder
 A library is a set of named functions. 
FunctionDefLibraryOrBuilder  
FunctionDefOrBuilder  
FunctionProtos  
FunctionSpec
 Represents `FunctionSpec` used in `Function`. 
FunctionSpec.Builder
 Represents `FunctionSpec` used in `Function`. 
FunctionSpec.ExperimentalCompile
 Whether the function should be compiled by XLA. 
FunctionSpecOrBuilder  
FusedBatchNorm<T extends TNumber, U extends TNumber> Batch normalization. 
FusedBatchNorm.Options Optional attributes for FusedBatchNorm  
FusedBatchNormGrad<T extends TNumber, U extends TNumber> Gradient for batch normalization. 
FusedBatchNormGrad.Options Optional attributes for FusedBatchNormGrad  
FusedPadConv2d<T extends TNumber> Performs a padding as a preprocess during a convolution. 
FusedResizeAndPadConv2d<T extends TNumber> Performs a resize and padding as a preprocess during a convolution. 
FusedResizeAndPadConv2d.Options Optional attributes for FusedResizeAndPadConv2d  

G

Gather<T extends TNumber> Mutually accumulates multiple tensors of identical type and shape. 
Gather<T extends TType> Gather slices from `params` axis `axis` according to `indices`. 
Gather<T extends TType> Wraps the XLA Gather operator documented at

https://www.tensorflow.org/xla/operation_semantics#gather 

Gather.Options Optional attributes for Gather  
Gather.Options Optional attributes for Gather  
GatherNd<T extends TType> Gather slices from `params` into a Tensor with shape specified by `indices`. 
GatherV2<T extends TNumber> Mutually accumulates multiple tensors of identical type and shape. 
GatherV2.Options Optional attributes for GatherV2  
GenerateBoundingBoxProposals This op produces Region of Interests from given bounding boxes(bbox_deltas) encoded wrt anchors according to eq.2 in arXiv:1506.01497

The op selects top `pre_nms_topn` scoring boxes, decodes them with respect to anchors, applies non-maximal suppression on overlapping boxes with higher than `nms_threshold` intersection-over-union (iou) value, discarding boxes where shorter side is less than `min_size`. 

GenerateBoundingBoxProposals.Options Optional attributes for GenerateBoundingBoxProposals  
GenerateVocabRemapping Given a path to new and old vocabulary files, returns a remapping Tensor of

length `num_new_vocab`, where `remapping[i]` contains the row number in the old vocabulary that corresponds to row `i` in the new vocabulary (starting at line `new_vocab_offset` and up to `num_new_vocab` entities), or `-1` if entry `i` in the new vocabulary is not in the old vocabulary. 

GenerateVocabRemapping.Options Optional attributes for GenerateVocabRemapping  
GetSessionHandle Store the input tensor in the state of the current session. 
GetSessionTensor<T extends TType> Get the value of the tensor specified by its handle. 
Glorot<T extends TFloating> The Glorot initializer, also called Xavier initializer. 
GPUInfo Protobuf type tensorflow.GPUInfo  
GPUInfo.Builder Protobuf type tensorflow.GPUInfo  
GPUInfoOrBuilder  
GPUOptions Protobuf type tensorflow.GPUOptions  
GPUOptions.Builder Protobuf type tensorflow.GPUOptions  
GPUOptions.Experimental Protobuf type tensorflow.GPUOptions.Experimental  
GPUOptions.Experimental.Builder Protobuf type tensorflow.GPUOptions.Experimental  
GPUOptions.Experimental.VirtualDevices
 Configuration for breaking down a visible GPU into multiple "virtual"
 devices. 
GPUOptions.Experimental.VirtualDevices.Builder
 Configuration for breaking down a visible GPU into multiple "virtual"
 devices. 
GPUOptions.Experimental.VirtualDevicesOrBuilder  
GPUOptions.ExperimentalOrBuilder  
GPUOptionsOrBuilder  
GradientDef
 GradientDef defines the gradient function of a function defined in
 a function library. 
GradientDef.Builder
 GradientDef defines the gradient function of a function defined in
 a function library. 
GradientDefOrBuilder  
GradientDescent Basic Stochastic gradient descent optimizer. 
Gradients Adds operations to compute the partial derivatives of sum of ys w.r.t xs, i.e., d(y_1 + y_2 + ...)/dx_1, d(y_1 + y_2 + ...)/dx_2...

If Options.dx() values are set, they are as the initial symbolic partial derivatives of some loss function L w.r.t. 

Gradients.Options Optional attributes for Gradients  
Graph A data flow graph representing a TensorFlow computation. 
Graph.WhileSubgraphBuilder Used to instantiate an abstract class which overrides the buildSubgraph method to build a conditional or body subgraph for a while loop. 
GraphDebugInfo Protobuf type tensorflow.GraphDebugInfo  
GraphDebugInfo.Builder Protobuf type tensorflow.GraphDebugInfo  
GraphDebugInfo.FileLineCol
 This represents a file/line location in the source code. 
GraphDebugInfo.FileLineCol.Builder
 This represents a file/line location in the source code. 
GraphDebugInfo.FileLineColOrBuilder  
GraphDebugInfo.StackTrace
 This represents a stack trace which is a ordered list of `FileLineCol`. 
GraphDebugInfo.StackTrace.Builder
 This represents a stack trace which is a ordered list of `FileLineCol`. 
GraphDebugInfo.StackTraceOrBuilder  
GraphDebugInfoOrBuilder  
GraphDebugInfoProtos  
GraphDef
 Represents the graph of operations
 
Protobuf type tensorflow.GraphDef  
GraphDef.Builder
 Represents the graph of operations
 
Protobuf type tensorflow.GraphDef  
GraphDefOrBuilder  
GraphExecutionTrace
 Data relating to an execution of a Graph (e.g., an eager execution of a
 FuncGraph). 
GraphExecutionTrace.Builder
 Data relating to an execution of a Graph (e.g., an eager execution of a
 FuncGraph). 
GraphExecutionTraceOrBuilder  
GraphOpCreation
 The creation of an op in a TensorFlow Graph (e.g., FuncGraph in TF2). 
GraphOpCreation.Builder
 The creation of an op in a TensorFlow Graph (e.g., FuncGraph in TF2). 
GraphOpCreationOrBuilder  
GraphOperation Implementation for an Operation added as a node to a Graph
GraphOperationBuilder An OperationBuilder for adding GraphOperations to a Graph
GraphOptions Protobuf type tensorflow.GraphOptions  
GraphOptions.Builder Protobuf type tensorflow.GraphOptions  
GraphOptionsOrBuilder  
GraphProtos  
GraphTransferConstNodeInfo Protobuf type tensorflow.GraphTransferConstNodeInfo  
GraphTransferConstNodeInfo.Builder Protobuf type tensorflow.GraphTransferConstNodeInfo  
GraphTransferConstNodeInfoOrBuilder  
GraphTransferGraphInputNodeInfo Protobuf type tensorflow.GraphTransferGraphInputNodeInfo  
GraphTransferGraphInputNodeInfo.Builder Protobuf type tensorflow.GraphTransferGraphInputNodeInfo  
GraphTransferGraphInputNodeInfoOrBuilder  
GraphTransferGraphOutputNodeInfo Protobuf type tensorflow.GraphTransferGraphOutputNodeInfo  
GraphTransferGraphOutputNodeInfo.Builder Protobuf type tensorflow.GraphTransferGraphOutputNodeInfo  
GraphTransferGraphOutputNodeInfoOrBuilder  
GraphTransferInfo
 Protocol buffer representing a handle to a tensorflow resource. 
GraphTransferInfo.Builder
 Protocol buffer representing a handle to a tensorflow resource. 
GraphTransferInfo.Destination Protobuf enum tensorflow.GraphTransferInfo.Destination  
GraphTransferInfoOrBuilder  
GraphTransferInfoProto  
GraphTransferNodeInfo Protobuf type tensorflow.GraphTransferNodeInfo  
GraphTransferNodeInfo.Builder Protobuf type tensorflow.GraphTransferNodeInfo  
GraphTransferNodeInfoOrBuilder  
GraphTransferNodeInput Protobuf type tensorflow.GraphTransferNodeInput  
GraphTransferNodeInput.Builder Protobuf type tensorflow.GraphTransferNodeInput  
GraphTransferNodeInputInfo Protobuf type tensorflow.GraphTransferNodeInputInfo  
GraphTransferNodeInputInfo.Builder Protobuf type tensorflow.GraphTransferNodeInputInfo  
GraphTransferNodeInputInfoOrBuilder  
GraphTransferNodeInputOrBuilder  
GraphTransferNodeOutputInfo Protobuf type tensorflow.GraphTransferNodeOutputInfo  
GraphTransferNodeOutputInfo.Builder Protobuf type tensorflow.GraphTransferNodeOutputInfo  
GraphTransferNodeOutputInfoOrBuilder  
Greater Returns the truth value of (x > y) element-wise. 
GreaterEqual Returns the truth value of (x >= y) element-wise. 
GRUBlockCell<T extends TNumber> Computes the GRU cell forward propagation for 1 time step. 
GRUBlockCellGrad<T extends TNumber> Computes the GRU cell back-propagation for 1 time step. 
GuaranteeConst<T extends TType> Gives a guarantee to the TF runtime that the input tensor is a constant. 

H

HardSigmoid<T extends TFloating> Hard sigmoid activation. 
HashTable Creates a non-initialized hash table. 
HashTable.Options Optional attributes for HashTable  
He<T extends TFloating> He initializer. 
Helpers Container class for core methods which add or perform several operations and return one of them. 
Hinge Computes the hinge loss between labels and predictions. 
Hinge<T extends TNumber> A metric that computes the hinge loss metric between labels and predictions. 
HistogramFixedWidth<U extends TNumber> Return histogram of values. 
HistogramProto
 Serialization format for histogram module in
 core/lib/histogram/histogram.h
 
Protobuf type tensorflow.HistogramProto  
HistogramProto.Builder
 Serialization format for histogram module in
 core/lib/histogram/histogram.h
 
Protobuf type tensorflow.HistogramProto  
HistogramProtoOrBuilder  
HistogramSummary Outputs a `Summary` protocol buffer with a histogram. 
HsvToRgb<T extends TNumber> Convert one or more images from HSV to RGB. 
Huber Computes the Huber loss between labels and predictions. 

I

Identity<T extends TFloating> Initializer that generates the identity matrix. 
Identity<T extends TType> Return a tensor with the same shape and contents as the input tensor or value. 
IdentityN Returns a list of tensors with the same shapes and contents as the input

tensors. 

IdentityReader A Reader that outputs the queued work as both the key and value. 
IdentityReader.Options Optional attributes for IdentityReader  
Ifft<T extends TType> Inverse fast Fourier transform. 
Ifft2d<T extends TType> Inverse 2D fast Fourier transform. 
Ifft3d<T extends TType> Inverse 3D fast Fourier transform. 
Igamma<T extends TNumber> Compute the lower regularized incomplete Gamma function `P(a, x)`. 
Igammac<T extends TNumber> Compute the upper regularized incomplete Gamma function `Q(a, x)`. 
IgammaGradA<T extends TNumber> Computes the gradient of `igamma(a, x)` wrt `a`. 
IgnoreErrorsDataset Creates a dataset that contains the elements of `input_dataset` ignoring errors. 
IgnoreErrorsDataset Creates a dataset that contains the elements of `input_dataset` ignoring errors. 
IgnoreErrorsDataset.Options Optional attributes for IgnoreErrorsDataset  
IgnoreErrorsDataset.Options Optional attributes for IgnoreErrorsDataset  
IllegalRankException Exception thrown when an operation cannot be completed because of the rank of the targeted array. 
Imag<U extends TNumber> Returns the imaginary part of a complex number. 
ImageProjectiveTransformV2<T extends TNumber> Applies the given transform to each of the images. 
ImageProjectiveTransformV2.Options Optional attributes for ImageProjectiveTransformV2  
ImageProjectiveTransformV3<T extends TNumber> Applies the given transform to each of the images. 
ImageProjectiveTransformV3.Options Optional attributes for ImageProjectiveTransformV3  
ImageSummary Outputs a `Summary` protocol buffer with images. 
ImageSummary.Options Optional attributes for ImageSummary  
ImmutableConst<T extends TType> Returns immutable tensor from memory region. 
ImportEvent  
Index An index used for slicing a view out of an N-dimensional array. 
IndexedPositionIterator  
IndexedPositionIterator.CoordsLongConsumer  
Indices Helper class for instantiating Index objects. 
InfeedDequeue<T extends TType> A placeholder op for a value that will be fed into the computation. 
InfeedDequeueTuple Fetches multiple values from infeed as an XLA tuple. 
InfeedEnqueue An op which feeds a single Tensor value into the computation. 
InfeedEnqueue.Options Optional attributes for InfeedEnqueue  
InfeedEnqueuePrelinearizedBuffer An op which enqueues prelinearized buffer into TPU infeed. 
InfeedEnqueuePrelinearizedBuffer.Options Optional attributes for InfeedEnqueuePrelinearizedBuffer  
InfeedEnqueueTuple Feeds multiple Tensor values into the computation as an XLA tuple. 
InfeedEnqueueTuple.Options Optional attributes for InfeedEnqueueTuple  
Init  
Initializer<T extends TType> An interface for Initializers 
InitializeTable Table initializer that takes two tensors for keys and values respectively. 
InitializeTableFromDataset  
InitializeTableFromTextFile Initializes a table from a text file. 
InitializeTableFromTextFile.Options Optional attributes for InitializeTableFromTextFile  
InplaceAdd<T extends TType> Adds v into specified rows of x. 
InplaceSub<T extends TType> Subtracts `v` into specified rows of `x`. 
InplaceUpdate<T extends TType> Updates specified rows 'i' with values 'v'. 
Int64List Protobuf type tensorflow.Int64List  
Int64List.Builder Protobuf type tensorflow.Int64List  
Int64ListOrBuilder  
IntDataBuffer A DataBuffer of ints. 
IntDataLayout<S extends DataBuffer<?>> A DataLayout that converts data stored in a buffer to ints. 
IntDenseNdArray  
InterconnectLink Protobuf type tensorflow.InterconnectLink  
InterconnectLink.Builder Protobuf type tensorflow.InterconnectLink  
InterconnectLinkOrBuilder  
IntNdArray An NdArray of integers. 
InTopK Says whether the targets are in the top `K` predictions. 
Inv<T extends TType> Computes the inverse of one or more square invertible matrices or their adjoints (conjugate transposes). 
Inv.Options Optional attributes for Inv  
Invert<T extends TNumber> Invert (flip) each bit of supported types; for example, type `uint8` value 01010101 becomes 10101010. 
InvertPermutation<T extends TNumber> Computes the inverse permutation of a tensor. 
InvGrad<T extends TType> Computes the gradient for the inverse of `x` wrt its input. 
Irfft<U extends TNumber> Inverse real-valued fast Fourier transform. 
Irfft2d<U extends TNumber> Inverse 2D real-valued fast Fourier transform. 
Irfft3d<U extends TNumber> Inverse 3D real-valued fast Fourier transform. 
IsBoostedTreesEnsembleInitialized Checks whether a tree ensemble has been initialized. 
IsBoostedTreesQuantileStreamResourceInitialized Checks whether a quantile stream has been initialized. 
IsFinite Returns which elements of x are finite. 
IsInf Returns which elements of x are Inf. 
IsNan Returns which elements of x are NaN. 
IsotonicRegression<U extends TNumber> Solves a batch of isotonic regression problems. 
IsVariableInitialized Checks whether a tensor has been initialized. 
Iterator  
IteratorFromStringHandle  
IteratorFromStringHandle.Options Optional attributes for IteratorFromStringHandle  
IteratorGetDevice Returns the name of the device on which `resource` has been placed. 
IteratorGetDevice Returns the name of the device on which `resource` has been placed. 
IteratorGetNext Gets the next output from the given iterator . 
IteratorGetNextAsOptional Gets the next output from the given iterator as an Optional variant. 
IteratorGetNextSync Gets the next output from the given iterator. 
IteratorToStringHandle Converts the given `resource_handle` representing an iterator to a string. 

J

JobDef
 Defines a single job in a TensorFlow cluster. 
JobDef.Builder
 Defines a single job in a TensorFlow cluster. 
JobDefOrBuilder  
JobDeviceFilters
 Defines the device filters for tasks in a job. 
JobDeviceFilters.Builder
 Defines the device filters for tasks in a job. 
JobDeviceFiltersOrBuilder  
Join Joins the strings in the given list of string tensors into one tensor;

with the given separator (default is an empty separator). 

Join.Options Optional attributes for Join  

K

KernelDef Protobuf type tensorflow.KernelDef  
KernelDef.AttrConstraint Protobuf type tensorflow.KernelDef.AttrConstraint  
KernelDef.AttrConstraint.Builder Protobuf type tensorflow.KernelDef.AttrConstraint  
KernelDef.AttrConstraintOrBuilder  
KernelDef.Builder Protobuf type tensorflow.KernelDef  
KernelDefOrBuilder  
KernelDefProtos  
KernelList
 A collection of KernelDefs
 
Protobuf type tensorflow.KernelList  
KernelList.Builder
 A collection of KernelDefs
 
Protobuf type tensorflow.KernelList  
KernelListOrBuilder  
KeyValueSort<T extends TNumber, U extends TType> Wraps the XLA Sort operator, documented at

https://www.tensorflow.org/performance/xla/operation_semantics#sort . 

KLDivergence Computes Kullback-Leibler divergence loss between labels and predictions. 
KLDivergence<T extends TNumber> A metric that computes the Kullback-Leibler divergence loss metric between labels and predictions. 
KMC2ChainInitialization Returns the index of a data point that should be added to the seed set. 
KmeansPlusPlusInitialization Selects num_to_sample rows of input using the KMeans++ criterion. 
KthOrderStatistic Computes the Kth order statistic of a data set. 

L

L2Loss<T extends TNumber> L2 Loss. 
LatencyStatsDataset Records the latency of producing `input_dataset` elements in a StatsAggregator. 
LatencyStatsDataset Records the latency of producing `input_dataset` elements in a StatsAggregator. 
LeakyRelu<T extends TNumber> Computes rectified linear: `max(features, features * alpha)`. 
LeakyRelu.Options Optional attributes for LeakyRelu  
LeakyReluGrad<T extends TNumber> Computes rectified linear gradients for a LeakyRelu operation. 
LeakyReluGrad.Options Optional attributes for LeakyReluGrad  
LearnedUnigramCandidateSampler Generates labels for candidate sampling with a learned unigram distribution. 
LearnedUnigramCandidateSampler.Options Optional attributes for LearnedUnigramCandidateSampler  
LeCun<T extends TFloating> LeCun normal initializer. 
LeftShift<T extends TNumber> Elementwise computes the bitwise left-shift of `x` and `y`. 
Less Returns the truth value of (x < y) element-wise. 
LessEqual Returns the truth value of (x <= y) element-wise. 
Lgamma<T extends TNumber> Computes the log of the absolute value of `Gamma(x)` element-wise. 
Linear<U extends TNumber> Linear activation function (pass-through). 
LinSpace<T extends TNumber> Generates values in an interval. 
Listener_BytePointer  
Listener_String  
ListValue
 Represents a Python list. 
ListValue.Builder
 Represents a Python list. 
ListValueOrBuilder  
LMDBDataset Creates a dataset that emits the key-value pairs in one or more LMDB files. 
LmdbDataset  
LmdbReader A Reader that outputs the records from a LMDB file. 
LmdbReader.Options Optional attributes for LmdbReader  
LoadAndRemapMatrix Loads a 2-D (matrix) `Tensor` with name `old_tensor_name` from the checkpoint

at `ckpt_path` and potentially reorders its rows and columns using the specified remappings. 

LoadAndRemapMatrix.Options Optional attributes for LoadAndRemapMatrix  
LoadTPUEmbeddingAdadeltaParameters Load Adadelta embedding parameters. 
LoadTPUEmbeddingAdadeltaParameters.Options Optional attributes for LoadTPUEmbeddingAdadeltaParameters  
LoadTPUEmbeddingAdadeltaParametersGradAccumDebug Load Adadelta parameters with debug support. 
LoadTPUEmbeddingAdadeltaParametersGradAccumDebug.Options Optional attributes for LoadTPUEmbeddingAdadeltaParametersGradAccumDebug  
LoadTPUEmbeddingAdagradParameters Load Adagrad embedding parameters. 
LoadTPUEmbeddingAdagradParameters.Options Optional attributes for LoadTPUEmbeddingAdagradParameters  
LoadTPUEmbeddingAdagradParametersGradAccumDebug Load Adagrad embedding parameters with debug support. 
LoadTPUEmbeddingAdagradParametersGradAccumDebug.Options Optional attributes for LoadTPUEmbeddingAdagradParametersGradAccumDebug  
LoadTPUEmbeddingADAMParameters Load ADAM embedding parameters. 
LoadTPUEmbeddingADAMParameters.Options Optional attributes for LoadTPUEmbeddingADAMParameters  
LoadTPUEmbeddingADAMParametersGradAccumDebug Load ADAM embedding parameters with debug support. 
LoadTPUEmbeddingADAMParametersGradAccumDebug.Options Optional attributes for LoadTPUEmbeddingADAMParametersGradAccumDebug  
LoadTPUEmbeddingCenteredRMSPropParameters Load centered RMSProp embedding parameters. 
LoadTPUEmbeddingCenteredRMSPropParameters.Options Optional attributes for LoadTPUEmbeddingCenteredRMSPropParameters  
LoadTPUEmbeddingFTRLParameters Load FTRL embedding parameters. 
LoadTPUEmbeddingFTRLParameters.Options Optional attributes for LoadTPUEmbeddingFTRLParameters  
LoadTPUEmbeddingFTRLParametersGradAccumDebug Load FTRL embedding parameters with debug support. 
LoadTPUEmbeddingFTRLParametersGradAccumDebug.Options Optional attributes for LoadTPUEmbeddingFTRLParametersGradAccumDebug  
LoadTPUEmbeddingMDLAdagradLightParameters Load MDL Adagrad Light embedding parameters. 
LoadTPUEmbeddingMDLAdagradLightParameters.Options Optional attributes for LoadTPUEmbeddingMDLAdagradLightParameters  
LoadTPUEmbeddingMomentumParameters Load Momentum embedding parameters. 
LoadTPUEmbeddingMomentumParameters.Options Optional attributes for LoadTPUEmbeddingMomentumParameters  
LoadTPUEmbeddingMomentumParametersGradAccumDebug Load Momentum embedding parameters with debug support. 
LoadTPUEmbeddingMomentumParametersGradAccumDebug.Options Optional attributes for LoadTPUEmbeddingMomentumParametersGradAccumDebug  
LoadTPUEmbeddingProximalAdagradParameters Load proximal Adagrad embedding parameters. 
LoadTPUEmbeddingProximalAdagradParameters.Options Optional attributes for LoadTPUEmbeddingProximalAdagradParameters  
LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug Load proximal Adagrad embedding parameters with debug support. 
LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug.Options Optional attributes for LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug  
LoadTPUEmbeddingProximalYogiParameters  
LoadTPUEmbeddingProximalYogiParameters.Options Optional attributes for LoadTPUEmbeddingProximalYogiParameters  
LoadTPUEmbeddingProximalYogiParametersGradAccumDebug  
LoadTPUEmbeddingProximalYogiParametersGradAccumDebug.Options Optional attributes for LoadTPUEmbeddingProximalYogiParametersGradAccumDebug  
LoadTPUEmbeddingRMSPropParameters Load RMSProp embedding parameters. 
LoadTPUEmbeddingRMSPropParameters.Options Optional attributes for LoadTPUEmbeddingRMSPropParameters  
LoadTPUEmbeddingRMSPropParametersGradAccumDebug Load RMSProp embedding parameters with debug support. 
LoadTPUEmbeddingRMSPropParametersGradAccumDebug.Options Optional attributes for LoadTPUEmbeddingRMSPropParametersGradAccumDebug  
LoadTPUEmbeddingStochasticGradientDescentParameters Load SGD embedding parameters. 
LoadTPUEmbeddingStochasticGradientDescentParameters.Options Optional attributes for LoadTPUEmbeddingStochasticGradientDescentParameters  
LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug Load SGD embedding parameters. 
LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug.Options Optional attributes for LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug  
LocalLinks Protobuf type tensorflow.LocalLinks  
LocalLinks.Builder Protobuf type tensorflow.LocalLinks  
LocalLinksOrBuilder  
LocalResponseNormalization<T extends TNumber> Local Response Normalization. 
LocalResponseNormalization.Options Optional attributes for LocalResponseNormalization  
LocalResponseNormalizationGrad<T extends TNumber> Gradients for Local Response Normalization. 
LocalResponseNormalizationGrad.Options Optional attributes for LocalResponseNormalizationGrad  
Log<T extends TType> Computes natural logarithm of x element-wise. 
Log1p<T extends TType> Computes natural logarithm of (1 + x) element-wise. 
LogCosh Computes Computes the logarithm of the hyperbolic cosine of the prediction error. 
LogCoshError<T extends TNumber> A metric that computes the logarithm of the hyperbolic cosine of the prediction error metric between labels and predictions. 
LogicalAnd Returns the truth value of x AND y element-wise. 
LogicalNot Returns the truth value of `NOT x` element-wise. 
LogicalOr Returns the truth value of x OR y element-wise. 
LogMatrixDeterminant<T extends TType> Computes the sign and the log of the absolute value of the determinant of

one or more square matrices. 

LogMemoryProtos  
LogMessage
 Protocol buffer used for logging messages to the events file. 
LogMessage.Builder
 Protocol buffer used for logging messages to the events file. 
LogMessage.Level Protobuf enum tensorflow.LogMessage.Level  
LogMessageOrBuilder  
LogSoftmax<T extends TNumber> Computes log softmax activations. 
LogUniformCandidateSampler Generates labels for candidate sampling with a log-uniform distribution. 
LogUniformCandidateSampler.Options Optional attributes for LogUniformCandidateSampler  
LongDataBuffer A DataBuffer of longs. 
LongDataLayout<S extends DataBuffer<?>> A DataLayout that converts data stored in a buffer to longs. 
LongDenseNdArray  
LongNdArray An NdArray of longs. 
LookupTableExport<T extends TType, U extends TType> Outputs all keys and values in the table. 
LookupTableFind<U extends TType> Looks up keys in a table, outputs the corresponding values. 
LookupTableImport Replaces the contents of the table with the specified keys and values. 
LookupTableInsert Updates the table to associates keys with values. 
LookupTableRemove Removes keys and its associated values from a table. 
LookupTableSize Computes the number of elements in the given table. 
LoopCond Forwards the input to the output. 
Loss  
Losses Built-in loss functions. 
LossesHelper These are helper methods for Losses and Metrics and will be module private when Java modularity is applied to TensorFlow Java. 
LossMetric<T extends TNumber> Interface for Metrics that wrap Loss functions. 
LossTuple<T extends TNumber> A helper class for loss methods to return labels, target, and sampleWeights 
Lower Converts all uppercase characters into their respective lowercase replacements. 
Lower.Options Optional attributes for Lower  
LowerBound<U extends TNumber> Applies lower_bound(sorted_search_values, values) along each row. 
LSTMBlockCell<T extends TNumber> Computes the LSTM cell forward propagation for 1 time step. 
LSTMBlockCell.Options Optional attributes for LSTMBlockCell  
LSTMBlockCellGrad<T extends TNumber> Computes the LSTM cell backward propagation for 1 timestep. 
Lu<T extends TType, U extends TNumber> Computes the LU decomposition of one or more square matrices. 

M

MachineConfiguration Protobuf type tensorflow.MachineConfiguration  
MachineConfiguration.Builder Protobuf type tensorflow.MachineConfiguration  
MachineConfigurationOrBuilder  
MakeIterator Makes a new iterator from the given `dataset` and stores it in `iterator`. 
MakeUnique Make all elements in the non-Batch dimension unique, but \"close\" to

their initial value. 

MapClear Op removes all elements in the underlying container. 
MapClear.Options Optional attributes for MapClear  
MapDataset  
MapIncompleteSize Op returns the number of incomplete elements in the underlying container. 
MapIncompleteSize.Options Optional attributes for MapIncompleteSize  
MapIterator  
MapOptional  
MapPeek Op peeks at the values at the specified key. 
MapPeek.Options Optional attributes for MapPeek  
MapSize Op returns the number of elements in the underlying container. 
MapSize.Options Optional attributes for MapSize  
MapStage Stage (key, values) in the underlying container which behaves like a hashtable. 
MapStage.Options Optional attributes for MapStage  
MapUnstage Op removes and returns the values associated with the key

from the underlying container. 

MapUnstage.Options Optional attributes for MapUnstage  
MapUnstageNoKey Op removes and returns a random (key, value)

from the underlying container. 

MapUnstageNoKey.Options Optional attributes for MapUnstageNoKey  
MatchingFiles Returns the set of files matching one or more glob patterns. 
MatchingFilesDataset  
MatchingFilesDataset  
MatMul<T extends TType> Multiply the matrix "a" by the matrix "b". 
MatMul.Options Optional attributes for MatMul  
MatrixDiag<T extends TType> Returns a batched diagonal tensor with given batched diagonal values. 
MatrixDiagPart<T extends TType> Returns the batched diagonal part of a batched tensor. 
MatrixDiagPartV3<T extends TType> Returns the batched diagonal part of a batched tensor. 
MatrixDiagPartV3.Options Optional attributes for MatrixDiagPartV3  
MatrixDiagV3<T extends TType> Returns a batched diagonal tensor with given batched diagonal values. 
MatrixDiagV3.Options Optional attributes for MatrixDiagV3  
MatrixLogarithm<T extends TType> Computes the matrix logarithm of one or more square matrices:

\\(log(exp(A)) = A\\)

This op is only defined for complex matrices. 

MatrixSetDiag<T extends TType> Returns a batched matrix tensor with new batched diagonal values. 
MatrixSetDiag.Options Optional attributes for MatrixSetDiag  
MatrixSolveLs<T extends TType> Solves one or more linear least-squares problems. 
MatrixSolveLs.Options Optional attributes for MatrixSolveLs  
Max<T extends TType> Computes the maximum of elements across dimensions of a tensor. 
Max.Options Optional attributes for Max  
Maximum<T extends TNumber> Returns the max of x and y (i.e. 
MaxIntraOpParallelismDataset Creates a dataset that overrides the maximum intra-op parallelism. 
MaxIntraOpParallelismDataset Creates a dataset that overrides the maximum intra-op parallelism. 
MaxNorm Constrains the weights incident to each hidden unit to have a norm less than or equal to a desired value. 
MaxPool<T extends TType> Performs max pooling on the input. 
MaxPool.Options Optional attributes for MaxPool  
MaxPool3d<T extends TNumber> Performs 3D max pooling on the input. 
MaxPool3d.Options Optional attributes for MaxPool3d  
MaxPool3dGrad<U extends TNumber> Computes gradients of 3D max pooling function. 
MaxPool3dGrad.Options Optional attributes for MaxPool3dGrad  
MaxPool3dGradGrad<T extends TNumber> Computes second-order gradients of the maxpooling function. 
MaxPool3dGradGrad.Options Optional attributes for MaxPool3dGradGrad  
MaxPoolGrad<T extends TNumber> Computes gradients of the maxpooling function. 
MaxPoolGrad.Options Optional attributes for MaxPoolGrad  
MaxPoolGradGrad<T extends TNumber> Computes second-order gradients of the maxpooling function. 
MaxPoolGradGrad.Options Optional attributes for MaxPoolGradGrad  
MaxPoolGradGradWithArgmax<T extends TNumber> Computes second-order gradients of the maxpooling function. 
MaxPoolGradGradWithArgmax.Options Optional attributes for MaxPoolGradGradWithArgmax  
MaxPoolGradWithArgmax<T extends TNumber> Computes gradients of the maxpooling function. 
MaxPoolGradWithArgmax.Options Optional attributes for MaxPoolGradWithArgmax  
MaxPoolWithArgmax<T extends TNumber, U extends TNumber> Performs max pooling on the input and outputs both max values and indices. 
MaxPoolWithArgmax.Options Optional attributes for MaxPoolWithArgmax  
Mean<T extends TNumber> A metric that that implements a weighted mean WEIGHTED_MEAN 
Mean<T extends TType> Computes the mean of elements across dimensions of a tensor. 
Mean.Options Optional attributes for Mean  
MeanAbsoluteError Computes the mean of absolute difference between labels and predictions. 
MeanAbsoluteError<T extends TNumber> A metric that computes the mean of absolute difference between labels and predictions. 
MeanAbsolutePercentageError Computes the mean absolute percentage error between labels and predictions. 
MeanAbsolutePercentageError<T extends TNumber> A metric that computes the mean of absolute difference between labels and predictions. 
MeanMetricWrapper<T extends TNumber> A class that bridges a stateless loss function with the Mean metric using a reduction of WEIGHTED_MEAN
MeanSquaredError Computes the mean of squares of errors between labels and predictions. 
MeanSquaredError<T extends TNumber> A metric that computes the mean of absolute difference between labels and predictions. 
MeanSquaredLogarithmicError Computes the mean squared logarithmic errors between labels and predictions. 
MeanSquaredLogarithmicError<T extends TNumber> A metric that computes the mean of absolute difference between labels and predictions. 
MemAllocatorStats
 Some of the data from AllocatorStats
 
Protobuf type tensorflow.MemAllocatorStats  
MemAllocatorStats.Builder
 Some of the data from AllocatorStats
 
Protobuf type tensorflow.MemAllocatorStats  
MemAllocatorStatsOrBuilder  
MemChunk Protobuf type tensorflow.MemChunk  
MemChunk.Builder Protobuf type tensorflow.MemChunk  
MemChunkOrBuilder  
MemmappedFileSystemDirectory
 A directory of regions in a memmapped file. 
MemmappedFileSystemDirectory.Builder
 A directory of regions in a memmapped file. 
MemmappedFileSystemDirectoryElement
 A message that describes one region of memmapped file. 
MemmappedFileSystemDirectoryElement.Builder
 A message that describes one region of memmapped file. 
MemmappedFileSystemDirectoryElementOrBuilder  
MemmappedFileSystemDirectoryOrBuilder  
MemmappedFileSystemProtos  
MemoryDump Protobuf type tensorflow.MemoryDump  
MemoryDump.Builder Protobuf type tensorflow.MemoryDump  
MemoryDumpOrBuilder  
MemoryInfo Protobuf type tensorflow.MemoryInfo  
MemoryInfo.Builder Protobuf type tensorflow.MemoryInfo  
MemoryInfoOrBuilder  
MemoryLogRawAllocation Protobuf type tensorflow.MemoryLogRawAllocation  
MemoryLogRawAllocation.Builder Protobuf type tensorflow.MemoryLogRawAllocation  
MemoryLogRawAllocationOrBuilder  
MemoryLogRawDeallocation Protobuf type tensorflow.MemoryLogRawDeallocation  
MemoryLogRawDeallocation.Builder Protobuf type tensorflow.MemoryLogRawDeallocation  
MemoryLogRawDeallocationOrBuilder  
MemoryLogStep Protobuf type tensorflow.MemoryLogStep  
MemoryLogStep.Builder Protobuf type tensorflow.MemoryLogStep  
MemoryLogStepOrBuilder  
MemoryLogTensorAllocation Protobuf type tensorflow.MemoryLogTensorAllocation  
MemoryLogTensorAllocation.Builder Protobuf type tensorflow.MemoryLogTensorAllocation  
MemoryLogTensorAllocationOrBuilder  
MemoryLogTensorDeallocation Protobuf type tensorflow.MemoryLogTensorDeallocation  
MemoryLogTensorDeallocation.Builder Protobuf type tensorflow.MemoryLogTensorDeallocation  
MemoryLogTensorDeallocationOrBuilder  
MemoryLogTensorOutput Protobuf type tensorflow.MemoryLogTensorOutput  
MemoryLogTensorOutput.Builder Protobuf type tensorflow.MemoryLogTensorOutput  
MemoryLogTensorOutputOrBuilder  
MemoryStats
 For memory tracking. 
MemoryStats.Builder
 For memory tracking. 
MemoryStatsOrBuilder  
Merge<T extends TType> Forwards the value of an available tensor from `inputs` to `output`. 
MergeSummary Merges summaries. 
MergeV2Checkpoints V2 format specific: merges the metadata files of sharded checkpoints. 
MergeV2Checkpoints.Options Optional attributes for MergeV2Checkpoints  
MetaGraphDef
 NOTE: This protocol buffer is evolving, and will go through revisions in the
 coming months. 
MetaGraphDef.Builder
 NOTE: This protocol buffer is evolving, and will go through revisions in the
 coming months. 
MetaGraphDef.MetaInfoDef
 Meta information regarding the graph to be exported. 
MetaGraphDef.MetaInfoDef.Builder
 Meta information regarding the graph to be exported. 
MetaGraphDef.MetaInfoDefOrBuilder  
MetaGraphDefOrBuilder  
MetaGraphProtos  
Metric<T extends TNumber> Base class for Metrics 
MetricEntry Protobuf type tensorflow.MetricEntry  
MetricEntry.Builder Protobuf type tensorflow.MetricEntry  
MetricEntryOrBuilder  
MetricReduction Defines the different types of metric reductions  
Metrics Helper class with built-in metrics functions. 
MetricsHelper These are helper methods for Metrics and will be module private when Java modularity is applied to TensorFlow Java. 
Mfcc Transforms a spectrogram into a form that's useful for speech recognition. 
Mfcc.Options Optional attributes for Mfcc  
Min<T extends TType> Computes the minimum of elements across dimensions of a tensor. 
Min.Options Optional attributes for Min  
Minimum<T extends TNumber> Returns the min of x and y (i.e. 
MinMaxNorm Constrains the weights to have the norm between a lower bound and an upper bound. 
MirrorPad<T extends TType> Pads a tensor with mirrored values. 
MirrorPadGrad<T extends TType> Gradient op for `MirrorPad` op. 
MiscDataBufferFactory Factory of miscellaneous data buffers  
MlirPassthroughOp Wraps an arbitrary MLIR computation expressed as a module with a main() function. 
Mod<T extends TNumber> Returns element-wise remainder of division. 
ModelDataset Identity transformation that models performance. 
ModelDataset.Options Optional attributes for ModelDataset  
Momentum Stochastic gradient descent plus momentum, either nesterov or traditional. 
Mul<T extends TType> Returns x * y element-wise. 
MulNoNan<T extends TType> Returns x * y element-wise. 
MultiDeviceIterator Creates a MultiDeviceIterator resource. 
MultiDeviceIteratorFromStringHandle Generates a MultiDeviceIterator resource from its provided string handle. 
MultiDeviceIteratorFromStringHandle.Options Optional attributes for MultiDeviceIteratorFromStringHandle  
MultiDeviceIteratorGetNextFromShard Gets next element for the provided shard number. 
MultiDeviceIteratorInit Initializes the multi device iterator with the given dataset. 
MultiDeviceIteratorToStringHandle Produces a string handle for the given MultiDeviceIterator. 
Multinomial<U extends TNumber> Draws samples from a multinomial distribution. 
Multinomial.Options Optional attributes for Multinomial  
MutableDenseHashTable Creates an empty hash table that uses tensors as the backing store. 
MutableDenseHashTable.Options Optional attributes for MutableDenseHashTable  
MutableHashTable Creates an empty hash table. 
MutableHashTable.Options Optional attributes for MutableHashTable  
MutableHashTableOfTensors Creates an empty hash table. 
MutableHashTableOfTensors.Options Optional attributes for MutableHashTableOfTensors  
Mutex Creates a Mutex resource that can be locked by `MutexLock`. 
Mutex.Options Optional attributes for Mutex  
MutexLock Locks a mutex resource. 

N

Nadam Nadam Optimizer that implements the NAdam algorithm. 
NameAttrList
 A list of attr names and their values. 
NameAttrList.Builder
 A list of attr names and their values. 
NameAttrListOrBuilder  
NamedDevice Protobuf type tensorflow.NamedDevice  
NamedDevice.Builder Protobuf type tensorflow.NamedDevice  
NamedDeviceOrBuilder  
NamedTensorProto
 A pair of tensor name and tensor values. 
NamedTensorProto.Builder
 A pair of tensor name and tensor values. 
NamedTensorProtoOrBuilder  
NamedTensorProtos  
NamedTupleValue
 Represents Python's namedtuple. 
NamedTupleValue.Builder
 Represents Python's namedtuple. 
NamedTupleValueOrBuilder  
NcclAllReduce<T extends TNumber> Outputs a tensor containing the reduction across all input tensors. 
NcclAllReduce<T extends TNumber> Outputs a tensor containing the reduction across all input tensors. 
NcclBroadcast<T extends TNumber> Sends `input` to all devices that are connected to the output. 
NcclBroadcast<T extends TNumber> Sends `input` to all devices that are connected to the output. 
NcclReduce<T extends TNumber> Reduces `input` from `num_devices` using `reduction` to a single device. 
NcclReduce<T extends TNumber> Reduces `input` from `num_devices` using `reduction` to a single device. 
NdArray<T> A data structure of N-dimensions. 
NdArrays Utility class for instantiating NdArray objects. 
NdArraySequence<T extends NdArray<?>> A sequence of elements of an N-dimensional array. 
Ndtri<T extends TNumber>  
NearestNeighbors Selects the k nearest centers for each point. 
Neg<T extends TType> Computes numerical negative value element-wise. 
NegTrain Training via negative sampling. 
NextAfter<T extends TNumber> Returns the next representable value of `x1` in the direction of `x2`, element-wise. 
NextIteration<T extends TType> Makes its input available to the next iteration. 
NioDataBufferFactory Factory of JDK NIO-based data buffers  
NodeDef Protobuf type tensorflow.NodeDef  
NodeDef.Builder Protobuf type tensorflow.NodeDef  
NodeDef.ExperimentalDebugInfo Protobuf type tensorflow.NodeDef.ExperimentalDebugInfo  
NodeDef.ExperimentalDebugInfo.Builder Protobuf type tensorflow.NodeDef.ExperimentalDebugInfo  
NodeDef.ExperimentalDebugInfoOrBuilder  
NodeDefOrBuilder  
NodeExecStats
 Time/size stats recorded for a single execution of a graph node. 
NodeExecStats.Builder
 Time/size stats recorded for a single execution of a graph node. 
NodeExecStatsOrBuilder  
NodeOutput
 Output sizes recorded for a single execution of a graph node. 
NodeOutput.Builder
 Output sizes recorded for a single execution of a graph node. 
NodeOutputOrBuilder  
NodeProto  
NonDeterministicInts<U extends TType> Non-deterministically generates some integers. 
NoneValue
 Represents None. 
NoneValue.Builder
 Represents None. 
NoneValueOrBuilder  
NonMaxSuppression<T extends TNumber> Greedily selects a subset of bounding boxes in descending order of score,

pruning away boxes that have high intersection-over-union (IOU) overlap with previously selected boxes. 

NonMaxSuppression.Options Optional attributes for NonMaxSuppression  
NonMaxSuppressionWithOverlaps Greedily selects a subset of bounding boxes in descending order of score,

pruning away boxes that have high overlaps with previously selected boxes. 

NonNeg Constrains the weights to be non-negative. 
NonSerializableDataset  
NonSerializableDataset  
NoOp Does nothing. 
NotBroadcastableException Exception that indicates that static shapes are not able to broadcast among each other during arithmetic operations. 
NotEqual Returns the truth value of (x != y) element-wise. 
NotEqual.Options Optional attributes for NotEqual  
NthElement<T extends TNumber> Finds values of the `n`-th order statistic for the last dimension. 
NthElement.Options Optional attributes for NthElement  

O

OneHot<U extends TType> Returns a one-hot tensor. 
OneHot.Options Optional attributes for OneHot  
Ones<T extends TType> Initializer that generates tensors initialized to 1. 
Ones<T extends TType> An operator creating a constant initialized with ones of the shape given by `dims`. 
OnesLike<T extends TType> Returns a tensor of ones with the same shape and type as x. 
Op A logical unit of computation. 
OpDef
 Defines an operation. 
OpDef.ArgDef
 For describing inputs and outputs. 
OpDef.ArgDef.Builder
 For describing inputs and outputs. 
OpDef.ArgDefOrBuilder  
OpDef.AttrDef
 Description of the graph-construction-time configuration of this
 Op. 
OpDef.AttrDef.Builder
 Description of the graph-construction-time configuration of this
 Op. 
OpDef.AttrDefOrBuilder  
OpDef.Builder
 Defines an operation. 
OpDefOrBuilder  
OpDefProtos  
OpDeprecation
 Information about version-dependent deprecation of an op
 
Protobuf type tensorflow.OpDeprecation  
OpDeprecation.Builder
 Information about version-dependent deprecation of an op
 
Protobuf type tensorflow.OpDeprecation  
OpDeprecationOrBuilder  
Operand<T extends TType> Interface implemented by operands of a TensorFlow operation. 
Operands Utilities for manipulating operand related types and lists. 
Operation Performs computation on Tensors. 
OperationBuilder A builder for Operations. 
Operator Annotation used by classes to make TensorFlow operations conveniently accessible via org.tensorflow.op.Ops or one of its groups. 
OpList
 A collection of OpDefs
 
Protobuf type tensorflow.OpList  
OpList.Builder
 A collection of OpDefs
 
Protobuf type tensorflow.OpList  
OpListOrBuilder  
OptimizeDataset Creates a dataset by applying optimizations to `input_dataset`. 
OptimizeDataset.Options Optional attributes for OptimizeDataset  
OptimizeDatasetV2 Creates a dataset by applying related optimizations to `input_dataset`. 
OptimizeDatasetV2.Options Optional attributes for OptimizeDatasetV2  
Optimizer Base class for gradient optimizers. 
Optimizer.GradAndVar<T extends TType> A class that holds a paired gradient and variable. 
Optimizer.Options Optional attributes for Optimizer  
OptimizerOptions
 Options passed to the graph optimizer
 
Protobuf type tensorflow.OptimizerOptions  
OptimizerOptions.Builder
 Options passed to the graph optimizer
 
Protobuf type tensorflow.OptimizerOptions  
OptimizerOptions.GlobalJitLevel
 Control the use of the compiler/jit. 
OptimizerOptions.Level
 Optimization level
 
Protobuf enum tensorflow.OptimizerOptions.Level  
OptimizerOptionsOrBuilder  
Optimizers Enumerator used to create a new Optimizer with default parameters. 
OptionalFromValue Constructs an Optional variant from a tuple of tensors. 
OptionalGetValue Returns the value stored in an Optional variant or raises an error if none exists. 
OptionalHasValue Returns true if and only if the given Optional variant has a value. 
OptionalNone Creates an Optional variant with no value. 
OrderedMapClear Op removes all elements in the underlying container. 
OrderedMapClear.Options Optional attributes for OrderedMapClear  
OrderedMapIncompleteSize Op returns the number of incomplete elements in the underlying container. 
OrderedMapIncompleteSize.Options Optional attributes for OrderedMapIncompleteSize  
OrderedMapPeek Op peeks at the values at the specified key. 
OrderedMapPeek.Options Optional attributes for OrderedMapPeek  
OrderedMapSize Op returns the number of elements in the underlying container. 
OrderedMapSize.Options Optional attributes for OrderedMapSize  
OrderedMapStage Stage (key, values) in the underlying container which behaves like a ordered

associative container. 

OrderedMapStage.Options Optional attributes for OrderedMapStage  
OrderedMapUnstage Op removes and returns the values associated with the key

from the underlying container. 

OrderedMapUnstage.Options Optional attributes for OrderedMapUnstage  
OrderedMapUnstageNoKey Op removes and returns the (key, value) element with the smallest

key from the underlying container. 

OrderedMapUnstageNoKey.Options Optional attributes for OrderedMapUnstageNoKey  
OrdinalSelector A TPU core selector Op. 
Orthogonal<T extends TFloating> Initializer that generates an orthogonal matrix. 
OutfeedDequeue<T extends TType> Retrieves a single tensor from the computation outfeed. 
OutfeedDequeue.Options Optional attributes for OutfeedDequeue  
OutfeedDequeueTuple Retrieve multiple values from the computation outfeed. 
OutfeedDequeueTuple.Options Optional attributes for OutfeedDequeueTuple  
OutfeedDequeueTupleV2 Retrieve multiple values from the computation outfeed. 
OutfeedDequeueV2<T extends TType> Retrieves a single tensor from the computation outfeed. 
OutfeedEnqueue Enqueue a Tensor on the computation outfeed. 
OutfeedEnqueueTuple Enqueue multiple Tensor values on the computation outfeed. 
Output<T extends TType> A symbolic handle to a tensor produced by an Operation

P

Pad<T extends TType> Pads a tensor. 
Pad<T extends TType> Wraps the XLA Pad operator, documented at

https://www.tensorflow.org/performance/xla/operation_semantics#pad . 

PaddedBatchDataset Creates a dataset that batches and pads `batch_size` elements from the input. 
PaddedBatchDataset.Options Optional attributes for PaddedBatchDataset  
PaddingFifoQueue A queue that produces elements in first-in first-out order. 
PaddingFifoQueue.Options Optional attributes for PaddingFifoQueue  
PairValue
 Represents a (key, value) pair. 
PairValue.Builder
 Represents a (key, value) pair. 
PairValueOrBuilder  
ParallelConcat<T extends TType> Concatenates a list of `N` tensors along the first dimension. 
ParallelDynamicStitch<T extends TType> Interleave the values from the `data` tensors into a single tensor. 
ParameterizedTruncatedNormal<U extends TNumber> Outputs random values from a normal distribution. 
ParameterizedTruncatedNormal.Options Optional attributes for ParameterizedTruncatedNormal  
ParseExample Transforms a vector of tf.Example protos (as strings) into typed tensors. 
ParseExampleDataset Transforms `input_dataset` containing `Example` protos as vectors of DT_STRING into a dataset of `Tensor` or `SparseTensor` objects representing the parsed features. 
ParseExampleDataset.Options Optional attributes for ParseExampleDataset  
ParseSequenceExample Transforms a vector of tf.io.SequenceExample protos (as strings) into typed tensors. 
ParseSequenceExample.Options Optional attributes for ParseSequenceExample  
ParseSingleExample Transforms a tf.Example proto (as a string) into typed tensors. 
ParseSingleSequenceExample Transforms a scalar brain.SequenceExample proto (as strings) into typed tensors. 
ParseSingleSequenceExample.Options Optional attributes for ParseSingleSequenceExample  
ParseTensor<T extends TType> Transforms a serialized tensorflow.TensorProto proto into a Tensor. 
PartitionedInput<T extends TType> An op that groups a list of partitioned inputs together. 
PartitionedInput.Options Optional attributes for PartitionedInput  
PartitionedOutput<T extends TType> An op that demultiplexes a tensor to be sharded by XLA to a list of partitioned

outputs outside the XLA computation. 

PartitionedOutput.Options Optional attributes for PartitionedOutput  
Placeholder<T extends TType> A placeholder op for a value that will be fed into the computation. 
Placeholder.Options Optional attributes for Placeholder  
PlaceholderWithDefault<T extends TType> A placeholder op that passes through `input` when its output is not fed. 
PlatformInfo Protobuf type tensorflow.PlatformInfo  
PlatformInfo.Builder Protobuf type tensorflow.PlatformInfo  
PlatformInfoOrBuilder  
Poisson Computes the Poisson loss between labels and predictions. 
Poisson<T extends TNumber> A metric that computes the poisson loss metric between labels and predictions. 
Polygamma<T extends TNumber> Compute the polygamma function \\(\psi^{(n)}(x)\\). 
PopulationCount Computes element-wise population count (a.k.a. 
PositionIterator  
Pow<T extends TType> Computes the power of one value to another. 
PrefetchDataset Creates a dataset that asynchronously prefetches elements from `input_dataset`. 
PrefetchDataset.Options Optional attributes for PrefetchDataset  
Prelinearize An op which linearizes one Tensor value to an opaque variant tensor. 
Prelinearize.Options Optional attributes for Prelinearize  
PrelinearizeTuple An op which linearizes multiple Tensor values to an opaque variant tensor. 
PrelinearizeTuple.Options Optional attributes for PrelinearizeTuple  
PreventGradient<T extends TType> An identity op that triggers an error if a gradient is requested. 
PreventGradient.Options Optional attributes for PreventGradient  
Print Prints a string scalar. 
Print.Options Optional attributes for Print  
PriorityQueue A queue that produces elements sorted by the first component value. 
PriorityQueue.Options Optional attributes for PriorityQueue  
PrivateThreadPoolDataset Creates a dataset that uses a custom thread pool to compute `input_dataset`. 
PrivateThreadPoolDataset Creates a dataset that uses a custom thread pool to compute `input_dataset`. 
Prod<T extends TType> Computes the product of elements across dimensions of a tensor. 
Prod.Options Optional attributes for Prod  
ProfileOptions
 Next ID: 11
 
Protobuf type tensorflow.ProfileOptions  
ProfileOptions.Builder
 Next ID: 11
 
Protobuf type tensorflow.ProfileOptions  
ProfileOptions.DeviceType Protobuf enum tensorflow.ProfileOptions.DeviceType  
ProfileOptionsOrBuilder  
ProfilerOptionsProtos  

Q

Qr<T extends TType> Computes the QR decompositions of one or more matrices. 
Qr.Options Optional attributes for Qr  
Quantize<T extends TType> Quantize the 'input' tensor of type float to 'output' tensor of type 'T'. 
Quantize.Options Optional attributes for Quantize  
QuantizeAndDequantize<T extends TNumber> Quantizes then dequantizes a tensor. 
QuantizeAndDequantize.Options Optional attributes for QuantizeAndDequantize  
QuantizeAndDequantizeV3<T extends TNumber> Quantizes then dequantizes a tensor. 
QuantizeAndDequantizeV3.Options Optional attributes for QuantizeAndDequantizeV3  
QuantizeAndDequantizeV4<T extends TNumber> Returns the gradient of `quantization.QuantizeAndDequantizeV4`. 
QuantizeAndDequantizeV4.Options Optional attributes for QuantizeAndDequantizeV4  
QuantizeAndDequantizeV4Grad<T extends TNumber> Returns the gradient of `QuantizeAndDequantizeV4`. 
QuantizeAndDequantizeV4Grad.Options Optional attributes for QuantizeAndDequantizeV4Grad  
QuantizedAdd<V extends TType> Returns x + y element-wise, working on quantized buffers. 
QuantizedAvgPool<T extends TType> Produces the average pool of the input tensor for quantized types. 
QuantizedBatchNormWithGlobalNormalization<U extends TType> Quantized Batch normalization. 
QuantizedBiasAdd<V extends TType> Adds Tensor 'bias' to Tensor 'input' for Quantized types. 
QuantizedConcat<T extends TType> Concatenates quantized tensors along one dimension. 
QuantizedConv2d<V extends TType> Computes a 2D convolution given quantized 4D input and filter tensors. 
QuantizedConv2d.Options Optional attributes for QuantizedConv2d  
QuantizedConv2DAndRelu<V extends TType>  
QuantizedConv2DAndRelu.Options Optional attributes for QuantizedConv2DAndRelu  
QuantizedConv2DAndReluAndRequantize<V extends TType>  
QuantizedConv2DAndReluAndRequantize.Options Optional attributes for QuantizedConv2DAndReluAndRequantize  
QuantizedConv2DAndRequantize<V extends TType>  
QuantizedConv2DAndRequantize.Options Optional attributes for QuantizedConv2DAndRequantize  
QuantizedConv2DPerChannel<V extends TType> Computes QuantizedConv2D per channel. 
QuantizedConv2DPerChannel.Options Optional attributes for QuantizedConv2DPerChannel  
QuantizedConv2DWithBias<V extends TType>  
QuantizedConv2DWithBias.Options Optional attributes for QuantizedConv2DWithBias  
QuantizedConv2DWithBiasAndRelu<V extends TType>  
QuantizedConv2DWithBiasAndRelu.Options Optional attributes for QuantizedConv2DWithBiasAndRelu  
QuantizedConv2DWithBiasAndReluAndRequantize<W extends TType>  
QuantizedConv2DWithBiasAndReluAndRequantize.Options Optional attributes for QuantizedConv2DWithBiasAndReluAndRequantize  
QuantizedConv2DWithBiasAndRequantize<W extends TType>  
QuantizedConv2DWithBiasAndRequantize.Options Optional attributes for QuantizedConv2DWithBiasAndRequantize  
QuantizedConv2DWithBiasSignedSumAndReluAndRequantize<X extends TType>  
QuantizedConv2DWithBiasSignedSumAndReluAndRequantize.Options Optional attributes for QuantizedConv2DWithBiasSignedSumAndReluAndRequantize  
QuantizedConv2DWithBiasSumAndRelu<V extends TType>  
QuantizedConv2DWithBiasSumAndRelu.Options Optional attributes for QuantizedConv2DWithBiasSumAndRelu  
QuantizedConv2DWithBiasSumAndReluAndRequantize<X extends TType>  
QuantizedConv2DWithBiasSumAndReluAndRequantize.Options Optional attributes for QuantizedConv2DWithBiasSumAndReluAndRequantize  
QuantizedDepthwiseConv2D<V extends TType> Computes quantized depthwise Conv2D. 
QuantizedDepthwiseConv2D.Options Optional attributes for QuantizedDepthwiseConv2D  
QuantizedDepthwiseConv2DWithBias<V extends TType> Computes quantized depthwise Conv2D with Bias. 
QuantizedDepthwiseConv2DWithBias.Options Optional attributes for QuantizedDepthwiseConv2DWithBias  
QuantizedDepthwiseConv2DWithBiasAndRelu<V extends TType> Computes quantized depthwise Conv2D with Bias and Relu. 
QuantizedDepthwiseConv2DWithBiasAndRelu.Options Optional attributes for QuantizedDepthwiseConv2DWithBiasAndRelu  
QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize<W extends TType> Computes quantized depthwise Conv2D with Bias, Relu and Requantize. 
QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize.Options Optional attributes for QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize  
QuantizedInstanceNorm<T extends TType> Quantized Instance normalization. 
QuantizedInstanceNorm.Options Optional attributes for QuantizedInstanceNorm  
QuantizedMatMul<V extends TType> Perform a quantized matrix multiplication of `a` by the matrix `b`. 
QuantizedMatMul.Options Optional attributes for QuantizedMatMul  
QuantizedMatMulWithBias<W extends TType> Performs a quantized matrix multiplication of `a` by the matrix `b` with bias add. 
QuantizedMatMulWithBias.Options Optional attributes for QuantizedMatMulWithBias  
QuantizedMatMulWithBiasAndDequantize<W extends TNumber>  
QuantizedMatMulWithBiasAndDequantize.Options Optional attributes for QuantizedMatMulWithBiasAndDequantize  
QuantizedMatMulWithBiasAndRelu<V extends TType> Perform a quantized matrix multiplication of `a` by the matrix `b` with bias add and relu fusion. 
QuantizedMatMulWithBiasAndRelu.Options Optional attributes for QuantizedMatMulWithBiasAndRelu  
QuantizedMatMulWithBiasAndReluAndRequantize<W extends TType> Perform a quantized matrix multiplication of `a` by the matrix `b` with bias add and relu and requantize fusion. 
QuantizedMatMulWithBiasAndReluAndRequantize.Options Optional attributes for QuantizedMatMulWithBiasAndReluAndRequantize  
QuantizedMatMulWithBiasAndRequantize<W extends TType>  
QuantizedMatMulWithBiasAndRequantize.Options Optional attributes for QuantizedMatMulWithBiasAndRequantize  
QuantizedMaxPool<T extends TType> Produces the max pool of the input tensor for quantized types. 
QuantizedMul<V extends TType> Returns x * y element-wise, working on quantized buffers. 
QuantizeDownAndShrinkRange<U extends TType> Convert the quantized 'input' tensor into a lower-precision 'output', using the

actual distribution of the values to maximize the usage of the lower bit depth and adjusting the output min and max ranges accordingly. 

QuantizedRelu<U extends TType> Computes Quantized Rectified Linear: `max(features, 0)` 
QuantizedRelu6<U extends TType> Computes Quantized Rectified Linear 6: `min(max(features, 0), 6)` 
QuantizedReluX<U extends TType> Computes Quantized Rectified Linear X: `min(max(features, 0), max_value)` 
QuantizedReshape<T extends TType> Reshapes a quantized tensor as per the Reshape op. 
QuantizedResizeBilinear<T extends TType> Resize quantized `images` to `size` using quantized bilinear interpolation. 
QuantizedResizeBilinear.Options Optional attributes for QuantizedResizeBilinear  
QueueClose Closes the given queue. 
QueueClose.Options Optional attributes for QueueClose  
QueueDequeue Dequeues a tuple of one or more tensors from the given queue. 
QueueDequeue.Options Optional attributes for QueueDequeue  
QueueDequeueMany Dequeues `n` tuples of one or more tensors from the given queue. 
QueueDequeueMany.Options Optional attributes for QueueDequeueMany  
QueueDequeueUpTo Dequeues `n` tuples of one or more tensors from the given queue. 
QueueDequeueUpTo.Options Optional attributes for QueueDequeueUpTo  
QueueEnqueue Enqueues a tuple of one or more tensors in the given queue. 
QueueEnqueue.Options Optional attributes for QueueEnqueue  
QueueEnqueueMany Enqueues zero or more tuples of one or more tensors in the given queue. 
QueueEnqueueMany.Options Optional attributes for QueueEnqueueMany  
QueueIsClosed Returns true if queue is closed. 
QueueRunnerDef
 Protocol buffer representing a QueueRunner. 
QueueRunnerDef.Builder
 Protocol buffer representing a QueueRunner. 
QueueRunnerDefOrBuilder  
QueueRunnerProtos  
QueueSize Computes the number of elements in the given queue. 

R

RaggedBincount<U extends TNumber> Counts the number of occurrences of each value in an integer array. 
RaggedBincount.Options Optional attributes for RaggedBincount  
RaggedCountSparseOutput<U extends TNumber> Performs sparse-output bin counting for a ragged tensor input. 
RaggedCountSparseOutput.Options Optional attributes for RaggedCountSparseOutput  
RaggedCross<T extends TType, U extends TNumber> Generates a feature cross from a list of tensors, and returns it as a RaggedTensor. 
RaggedGather<T extends TNumber, U extends TType> Gather ragged slices from `params` axis `0` according to `indices`. 
RaggedRange<U extends TNumber, T extends TNumber> Returns a `RaggedTensor` containing the specified sequences of numbers. 
RaggedTensorFromVariant<U extends TNumber, T extends TType> Decodes a `variant` Tensor into a `RaggedTensor`. 
RaggedTensorToSparse<U extends TType> Converts a `RaggedTensor` into a `SparseTensor` with the same values. 
RaggedTensorToTensor<U extends TType> Create a dense tensor from a ragged tensor, possibly altering its shape. 
RaggedTensorToVariant Encodes a `RaggedTensor` into a `variant` Tensor. 
RaggedTensorToVariantGradient<U extends TType> Helper used to compute the gradient for `RaggedTensorToVariant`. 
RandomCrop<T extends TNumber> Randomly crop `image`. 
RandomCrop.Options Optional attributes for RandomCrop  
RandomDataset Creates a Dataset that returns pseudorandom numbers. 
RandomDataset Creates a Dataset that returns pseudorandom numbers. 
RandomGamma<U extends TNumber> Outputs random values from the Gamma distribution(s) described by alpha. 
RandomGamma.Options Optional attributes for RandomGamma  
RandomGammaGrad<T extends TNumber> Computes the derivative of a Gamma random sample w.r.t. 
RandomNormal<T extends TFloating> Initializer that generates tensors with a normal distribution. 
RandomPoisson<V extends TNumber> Outputs random values from the Poisson distribution(s) described by rate. 
RandomPoisson.Options Optional attributes for RandomPoisson  
RandomShuffle<T extends TType> Randomly shuffles a tensor along its first dimension. 
RandomShuffle.Options Optional attributes for RandomShuffle  
RandomShuffleQueue A queue that randomizes the order of elements. 
RandomShuffleQueue.Options Optional attributes for RandomShuffleQueue  
RandomStandardNormal<U extends TNumber> Outputs random values from a normal distribution. 
RandomStandardNormal.Options Optional attributes for RandomStandardNormal  
RandomUniform<T extends TNumber> Initializer that generates tensors with a uniform distribution. 
RandomUniform<U extends TNumber> Outputs random values from a uniform distribution. 
RandomUniform.Options Optional attributes for RandomUniform  
RandomUniformInt<U extends TNumber> Outputs random integers from a uniform distribution. 
RandomUniformInt.Options Optional attributes for RandomUniformInt  
Range<T extends TNumber> Creates a sequence of numbers. 
RangeDataset Creates a dataset with a range of values. 
Rank Returns the rank of a tensor. 
RawDataBufferFactory Factory of raw data buffers  
RawOp A base class for Op implementations that are backed by a single Operation
RawTensor A tensor which memory has not been mapped to a data space directly accessible from the JVM. 
ReaderBaseProtos  
ReaderBaseState
 For serializing and restoring the state of ReaderBase, see
 reader_base.h for details. 
ReaderBaseState.Builder
 For serializing and restoring the state of ReaderBase, see
 reader_base.h for details. 
ReaderBaseStateOrBuilder  
ReaderNumRecordsProduced Returns the number of records this Reader has produced. 
ReaderNumWorkUnitsCompleted Returns the number of work units this Reader has finished processing. 
ReaderRead Returns the next record (key, value pair) produced by a Reader. 
ReaderReadUpTo Returns up to `num_records` (key, value) pairs produced by a Reader. 
ReaderReset Restore a Reader to its initial clean state. 
ReaderRestoreState Restore a reader to a previously saved state. 
ReaderSerializeState Produce a string tensor that encodes the state of a Reader. 
ReadFile Reads and outputs the entire contents of the input filename. 
ReadVariableOp<T extends TType> Reads the value of a variable. 
Real<U extends TNumber> Returns the real part of a complex number. 
RealDiv<T extends TType> Returns x / y element-wise for real types. 
RebatchDataset Creates a dataset that changes the batch size. 
RebatchDataset Creates a dataset that changes the batch size. 
RebatchDataset.Options Optional attributes for RebatchDataset  
RebatchDataset.Options Optional attributes for RebatchDataset  
RebatchDatasetV2 Creates a dataset that changes the batch size. 
Reciprocal<T extends TType> Computes the reciprocal of x element-wise. 
ReciprocalGrad<T extends TType> Computes the gradient for the inverse of `x` wrt its input. 
RecordInput Emits randomized records. 
RecordInput.Options Optional attributes for RecordInput  
Recv<T extends TType> Receives the named tensor from send_device on recv_device. 
Recv<T extends TType> Receives the named tensor from another XLA computation. 
Recv.Options Optional attributes for Recv  
RecvTPUEmbeddingActivations An op that receives embedding activations on the TPU. 
Reduce<T extends TNumber> Encapsulates metrics that perform a reduce operation on the metric values. 
Reduce<T extends TNumber> Mutually reduces multiple tensors of identical type and shape. 
Reduce.Options Optional attributes for Reduce  
ReduceAll Computes the "logical and" of elements across dimensions of a tensor. 
ReduceAll.Options Optional attributes for ReduceAll  
ReduceAny Computes the "logical or" of elements across dimensions of a tensor. 
ReduceAny.Options Optional attributes for ReduceAny  
ReduceJoin Joins a string Tensor across the given dimensions. 
ReduceJoin.Options Optional attributes for ReduceJoin  
ReduceMax<T extends TType> Computes the maximum of elements across dimensions of a tensor. 
ReduceMax.Options Optional attributes for ReduceMax  
ReduceMin<T extends TType> Computes the minimum of elements across dimensions of a tensor. 
ReduceMin.Options Optional attributes for ReduceMin  
ReduceProd<T extends TType> Computes the product of elements across dimensions of a tensor. 
ReduceProd.Options Optional attributes for ReduceProd  
ReduceSum<T extends TType> Computes the sum of elements across dimensions of a tensor. 
ReduceSum.Options Optional attributes for ReduceSum  
ReduceV2<T extends TNumber> Mutually reduces multiple tensors of identical type and shape. 
ReduceV2.Options Optional attributes for ReduceV2  
Reduction Type of Loss Reduction

AUTO indicates that the reduction option will be determined by the usage context. 

RefEnter<T extends TType> Creates or finds a child frame, and makes `data` available to the child frame. 
RefEnter.Options Optional attributes for RefEnter  
RefExit<T extends TType> Exits the current frame to its parent frame. 
RefIdentity<T extends TType> Return the same ref tensor as the input ref tensor. 
RefMerge<T extends TType> Forwards the value of an available tensor from `inputs` to `output`. 
RefNextIteration<T extends TType> Makes its input available to the next iteration. 
RefSelect<T extends TType> Forwards the `index`th element of `inputs` to `output`. 
RefSwitch<T extends TType> Forwards the ref tensor `data` to the output port determined by `pred`. 
RegexFullMatch Check if the input matches the regex pattern. 
RegexReplace Replaces matches of the `pattern` regular expression in `input` with the replacement string provided in `rewrite`. 
RegexReplace.Options Optional attributes for RegexReplace  
RegisterDataset Registers a dataset with the tf.data service. 
RelativeDimensionalSpace  
Relu<T extends TType> Computes rectified linear: `max(features, 0)`. 
ReLU<T extends TNumber> Rectified Linear Unit(ReLU) activation. 
Relu6<T extends TNumber> Computes rectified linear 6: `min(max(features, 0), 6)`. 
Relu6Grad<T extends TNumber> Computes rectified linear 6 gradients for a Relu6 operation. 
ReluGrad<T extends TNumber> Computes rectified linear gradients for a Relu operation. 
RemoteFusedGraphExecute Execute a sub graph on a remote processor. 
RemoteFusedGraphExecuteInfo
 Protocol buffer representing a handle to a tensorflow resource. 
RemoteFusedGraphExecuteInfo.Builder
 Protocol buffer representing a handle to a tensorflow resource. 
RemoteFusedGraphExecuteInfo.TensorShapeTypeProto Protobuf type tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto  
RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.Builder Protobuf type tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto  
RemoteFusedGraphExecuteInfo.TensorShapeTypeProtoOrBuilder  
RemoteFusedGraphExecuteInfoOrBuilder  
RemoteFusedGraphExecuteInfoProto  
RemoteProfilerSessionManagerOptions
 Options for remote profiler session manager. 
RemoteProfilerSessionManagerOptions.Builder
 Options for remote profiler session manager. 
RemoteProfilerSessionManagerOptionsOrBuilder  
RemoteTensorHandle Protobuf type tensorflow.eager.RemoteTensorHandle  
RemoteTensorHandle.Builder Protobuf type tensorflow.eager.RemoteTensorHandle  
RemoteTensorHandleOrBuilder  
RemoteTensorHandleProtos  
RepeatDataset Creates a dataset that emits the outputs of `input_dataset` `count` times. 
ReplicaId Replica ID. 
ReplicatedInput<T extends TType> Connects N inputs to an N-way replicated TPU computation. 
ReplicatedInput.Options Optional attributes for ReplicatedInput  
ReplicatedOutput<T extends TType> Connects N outputs from an N-way replicated TPU computation. 
ReplicateMetadata Metadata indicating how the TPU computation should be replicated. 
ReplicateMetadata.Options Optional attributes for ReplicateMetadata  
RequantizationRange Computes a range that covers the actual values present in a quantized tensor. 
RequantizationRangePerChannel Computes requantization range per channel. 
Requantize<U extends TType> Converts the quantized `input` tensor into a lower-precision `output`. 
RequantizePerChannel<U extends TType> Requantizes input with min and max values known per channel. 
RequestedExitCode Protobuf type tensorflow.RequestedExitCode  
RequestedExitCode.Builder Protobuf type tensorflow.RequestedExitCode  
RequestedExitCodeOrBuilder  
Reshape<T extends TType> Reshapes a tensor. 
ResizeArea Resize `images` to `size` using area interpolation. 
ResizeArea.Options Optional attributes for ResizeArea  
ResizeBicubic Resize `images` to `size` using bicubic interpolation. 
ResizeBicubic.Options Optional attributes for ResizeBicubic  
ResizeBicubicGrad<T extends TNumber> Computes the gradient of bicubic interpolation. 
ResizeBicubicGrad.Options Optional attributes for ResizeBicubicGrad  
ResizeBilinear Resize `images` to `size` using bilinear interpolation. 
ResizeBilinear.Options Optional attributes for ResizeBilinear  
ResizeBilinearGrad<T extends TNumber> Computes the gradient of bilinear interpolation. 
ResizeBilinearGrad.Options Optional attributes for ResizeBilinearGrad  
ResizeNearestNeighbor<T extends TNumber> Resize `images` to `size` using nearest neighbor interpolation. 
ResizeNearestNeighbor.Options Optional attributes for ResizeNearestNeighbor  
ResizeNearestNeighborGrad<T extends TNumber> Computes the gradient of nearest neighbor interpolation. 
ResizeNearestNeighborGrad.Options Optional attributes for ResizeNearestNeighborGrad  
ResourceAccumulatorApplyGradient Applies a gradient to a given accumulator. 
ResourceAccumulatorNumAccumulated Returns the number of gradients aggregated in the given accumulators. 
ResourceAccumulatorSetGlobalStep Updates the accumulator with a new value for global_step. 
ResourceAccumulatorTakeGradient<T extends TType> Extracts the average gradient in the given ConditionalAccumulator. 
ResourceApplyAdadelta Update '*var' according to the adadelta scheme. 
ResourceApplyAdadelta.Options Optional attributes for ResourceApplyAdadelta  
ResourceApplyAdagrad Update '*var' according to the adagrad scheme. 
ResourceApplyAdagrad.Options Optional attributes for ResourceApplyAdagrad  
ResourceApplyAdagradDa Update '*var' according to the proximal adagrad scheme. 
ResourceApplyAdagradDa.Options Optional attributes for ResourceApplyAdagradDa  
ResourceApplyAdam Update '*var' according to the Adam algorithm. 
ResourceApplyAdam.Options Optional attributes for ResourceApplyAdam  
ResourceApplyAdaMax Update '*var' according to the AdaMax algorithm. 
ResourceApplyAdaMax.Options Optional attributes for ResourceApplyAdaMax  
ResourceApplyAdamWithAmsgrad Update '*var' according to the Adam algorithm. 
ResourceApplyAdamWithAmsgrad.Options Optional attributes for ResourceApplyAdamWithAmsgrad  
ResourceApplyAddSign Update '*var' according to the AddSign update. 
ResourceApplyAddSign.Options Optional attributes for ResourceApplyAddSign  
ResourceApplyCenteredRmsProp Update '*var' according to the centered RMSProp algorithm. 
ResourceApplyCenteredRmsProp.Options Optional attributes for ResourceApplyCenteredRmsProp  
ResourceApplyFtrl Update '*var' according to the Ftrl-proximal scheme. 
ResourceApplyFtrl.Options Optional attributes for ResourceApplyFtrl  
ResourceApplyGradientDescent Update '*var' by subtracting 'alpha' * 'delta' from it. 
ResourceApplyGradientDescent.Options Optional attributes for ResourceApplyGradientDescent  
ResourceApplyKerasMomentum Update '*var' according to the momentum scheme. 
ResourceApplyKerasMomentum.Options Optional attributes for ResourceApplyKerasMomentum  
ResourceApplyMomentum Update '*var' according to the momentum scheme. 
ResourceApplyMomentum.Options Optional attributes for ResourceApplyMomentum  
ResourceApplyPowerSign Update '*var' according to the AddSign update. 
ResourceApplyPowerSign.Options Optional attributes for ResourceApplyPowerSign  
ResourceApplyProximalAdagrad Update '*var' and '*accum' according to FOBOS with Adagrad learning rate. 
ResourceApplyProximalAdagrad.Options Optional attributes for ResourceApplyProximalAdagrad  
ResourceApplyProximalGradientDescent Update '*var' as FOBOS algorithm with fixed learning rate. 
ResourceApplyProximalGradientDescent.Options Optional attributes for ResourceApplyProximalGradientDescent  
ResourceApplyRmsProp Update '*var' according to the RMSProp algorithm. 
ResourceApplyRmsProp.Options Optional attributes for ResourceApplyRmsProp  
ResourceConditionalAccumulator A conditional accumulator for aggregating gradients. 
ResourceConditionalAccumulator.Options Optional attributes for ResourceConditionalAccumulator  
ResourceCountUpTo<T extends TNumber> Increments variable pointed to by 'resource' until it reaches 'limit'. 
ResourceDtypeAndShape Protobuf type tensorflow.eager.ResourceDtypeAndShape  
ResourceDtypeAndShape.Builder Protobuf type tensorflow.eager.ResourceDtypeAndShape  
ResourceDtypeAndShapeOrBuilder  
ResourceGather<U extends TType> Gather slices from the variable pointed to by `resource` according to `indices`. 
ResourceGather.Options Optional attributes for ResourceGather  
ResourceGatherNd<U extends TType>  
ResourceHandle  
ResourceHandleProto
 Protocol buffer representing a handle to a tensorflow resource. 
ResourceHandleProto.Builder
 Protocol buffer representing a handle to a tensorflow resource. 
ResourceHandleProto.DtypeAndShape
 Protocol buffer representing a pair of (data type, tensor shape). 
ResourceHandleProto.DtypeAndShape.Builder
 Protocol buffer representing a pair of (data type, tensor shape). 
ResourceHandleProto.DtypeAndShapeOrBuilder  
ResourceHandleProtoOrBuilder  
ResourceScatterAdd Adds sparse updates to the variable referenced by `resource`. 
ResourceScatterDiv Divides sparse updates into the variable referenced by `resource`. 
ResourceScatterMax Reduces sparse updates into the variable referenced by `resource` using the `max` operation. 
ResourceScatterMin Reduces sparse updates into the variable referenced by `resource` using the `min` operation. 
ResourceScatterMul Multiplies sparse updates into the variable referenced by `resource`. 
ResourceScatterNdAdd Applies sparse addition to individual values or slices in a Variable. 
ResourceScatterNdAdd.Options Optional attributes for ResourceScatterNdAdd  
ResourceScatterNdMax  
ResourceScatterNdMax.Options Optional attributes for ResourceScatterNdMax  
ResourceScatterNdMin  
ResourceScatterNdMin.Options Optional attributes for ResourceScatterNdMin  
ResourceScatterNdSub Applies sparse subtraction to individual values or slices in a Variable. 
ResourceScatterNdSub.Options Optional attributes for ResourceScatterNdSub  
ResourceScatterNdUpdate Applies sparse `updates` to individual values or slices within a given

variable according to `indices`. 

ResourceScatterNdUpdate.Options Optional attributes for ResourceScatterNdUpdate  
ResourceScatterSub Subtracts sparse updates from the variable referenced by `resource`. 
ResourceScatterUpdate Assigns sparse updates to the variable referenced by `resource`. 
ResourceSparseApplyAdadelta var: Should be from a Variable(). 
ResourceSparseApplyAdadelta.Options Optional attributes for ResourceSparseApplyAdadelta  
ResourceSparseApplyAdagrad Update relevant entries in '*var' and '*accum' according to the adagrad scheme. 
ResourceSparseApplyAdagrad.Options Optional attributes for ResourceSparseApplyAdagrad  
ResourceSparseApplyAdagradDa Update entries in '*var' and '*accum' according to the proximal adagrad scheme. 
ResourceSparseApplyAdagradDa.Options Optional attributes for ResourceSparseApplyAdagradDa  
ResourceSparseApplyAdagradV2 Update relevant entries in '*var' and '*accum' according to the adagrad scheme. 
ResourceSparseApplyAdagradV2.Options Optional attributes for ResourceSparseApplyAdagradV2  
ResourceSparseApplyCenteredRmsProp Update '*var' according to the centered RMSProp algorithm. 
ResourceSparseApplyCenteredRmsProp.Options Optional attributes for ResourceSparseApplyCenteredRmsProp  
ResourceSparseApplyFtrl Update relevant entries in '*var' according to the Ftrl-proximal scheme. 
ResourceSparseApplyFtrl.Options Optional attributes for ResourceSparseApplyFtrl  
ResourceSparseApplyKerasMomentum Update relevant entries in '*var' and '*accum' according to the momentum scheme. 
ResourceSparseApplyKerasMomentum.Options Optional attributes for ResourceSparseApplyKerasMomentum  
ResourceSparseApplyMomentum Update relevant entries in '*var' and '*accum' according to the momentum scheme. 
ResourceSparseApplyMomentum.Options Optional attributes for ResourceSparseApplyMomentum  
ResourceSparseApplyProximalAdagrad Sparse update entries in '*var' and '*accum' according to FOBOS algorithm. 
ResourceSparseApplyProximalAdagrad.Options Optional attributes for ResourceSparseApplyProximalAdagrad  
ResourceSparseApplyProximalGradientDescent Sparse update '*var' as FOBOS algorithm with fixed learning rate. 
ResourceSparseApplyProximalGradientDescent.Options Optional attributes for ResourceSparseApplyProximalGradientDescent  
ResourceSparseApplyRmsProp Update '*var' according to the RMSProp algorithm. 
ResourceSparseApplyRmsProp.Options Optional attributes for ResourceSparseApplyRmsProp  
ResourceStridedSliceAssign Assign `value` to the sliced l-value reference of `ref`. 
ResourceStridedSliceAssign.Options Optional attributes for ResourceStridedSliceAssign  
Restore Restores tensors from a V2 checkpoint. 
RestoreSlice<T extends TType> Restores a tensor from checkpoint files. 
RestoreSlice.Options Optional attributes for RestoreSlice  
RetrieveTPUEmbeddingAdadeltaParameters Retrieve Adadelta embedding parameters. 
RetrieveTPUEmbeddingAdadeltaParameters.Options Optional attributes for RetrieveTPUEmbeddingAdadeltaParameters  
RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug Retrieve Adadelta embedding parameters with debug support. 
RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug.Options Optional attributes for RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug  
RetrieveTPUEmbeddingAdagradParameters Retrieve Adagrad embedding parameters. 
RetrieveTPUEmbeddingAdagradParameters.Options Optional attributes for RetrieveTPUEmbeddingAdagradParameters  
RetrieveTPUEmbeddingAdagradParametersGradAccumDebug Retrieve Adagrad embedding parameters with debug support. 
RetrieveTPUEmbeddingAdagradParametersGradAccumDebug.Options Optional attributes for RetrieveTPUEmbeddingAdagradParametersGradAccumDebug  
RetrieveTPUEmbeddingADAMParameters Retrieve ADAM embedding parameters. 
RetrieveTPUEmbeddingADAMParameters.Options Optional attributes for RetrieveTPUEmbeddingADAMParameters  
RetrieveTPUEmbeddingADAMParametersGradAccumDebug Retrieve ADAM embedding parameters with debug support. 
RetrieveTPUEmbeddingADAMParametersGradAccumDebug.Options Optional attributes for RetrieveTPUEmbeddingADAMParametersGradAccumDebug  
RetrieveTPUEmbeddingCenteredRMSPropParameters Retrieve centered RMSProp embedding parameters. 
RetrieveTPUEmbeddingCenteredRMSPropParameters.Options Optional attributes for RetrieveTPUEmbeddingCenteredRMSPropParameters  
RetrieveTPUEmbeddingFTRLParameters Retrieve FTRL embedding parameters. 
RetrieveTPUEmbeddingFTRLParameters.Options Optional attributes for RetrieveTPUEmbeddingFTRLParameters  
RetrieveTPUEmbeddingFTRLParametersGradAccumDebug Retrieve FTRL embedding parameters with debug support. 
RetrieveTPUEmbeddingFTRLParametersGradAccumDebug.Options Optional attributes for RetrieveTPUEmbeddingFTRLParametersGradAccumDebug  
RetrieveTPUEmbeddingMDLAdagradLightParameters Retrieve MDL Adagrad Light embedding parameters. 
RetrieveTPUEmbeddingMDLAdagradLightParameters.Options Optional attributes for RetrieveTPUEmbeddingMDLAdagradLightParameters  
RetrieveTPUEmbeddingMomentumParameters Retrieve Momentum embedding parameters. 
RetrieveTPUEmbeddingMomentumParameters.Options Optional attributes for RetrieveTPUEmbeddingMomentumParameters  
RetrieveTPUEmbeddingMomentumParametersGradAccumDebug Retrieve Momentum embedding parameters with debug support. 
RetrieveTPUEmbeddingMomentumParametersGradAccumDebug.Options Optional attributes for RetrieveTPUEmbeddingMomentumParametersGradAccumDebug  
RetrieveTPUEmbeddingProximalAdagradParameters Retrieve proximal Adagrad embedding parameters. 
RetrieveTPUEmbeddingProximalAdagradParameters.Options Optional attributes for RetrieveTPUEmbeddingProximalAdagradParameters  
RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug Retrieve proximal Adagrad embedding parameters with debug support. 
RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug.Options Optional attributes for RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug  
RetrieveTPUEmbeddingProximalYogiParameters  
RetrieveTPUEmbeddingProximalYogiParameters.Options Optional attributes for RetrieveTPUEmbeddingProximalYogiParameters  
RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug  
RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug.Options Optional attributes for RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug  
RetrieveTPUEmbeddingRMSPropParameters Retrieve RMSProp embedding parameters. 
RetrieveTPUEmbeddingRMSPropParameters.Options Optional attributes for RetrieveTPUEmbeddingRMSPropParameters  
RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug Retrieve RMSProp embedding parameters with debug support. 
RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug.Options Optional attributes for RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug  
RetrieveTPUEmbeddingStochasticGradientDescentParameters Retrieve SGD embedding parameters. 
RetrieveTPUEmbeddingStochasticGradientDescentParameters.Options Optional attributes for RetrieveTPUEmbeddingStochasticGradientDescentParameters  
RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug Retrieve SGD embedding parameters with debug support. 
RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug.Options Optional attributes for RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug  
Reverse<T extends TType> Reverses specific dimensions of a tensor. 
ReverseSequence<T extends TType> Reverses variable length slices. 
ReverseSequence.Options Optional attributes for ReverseSequence  
RewriterConfig
 Graph rewriting is experimental and subject to change, not covered by any
 API stability guarantees. 
RewriterConfig.Builder
 Graph rewriting is experimental and subject to change, not covered by any
 API stability guarantees. 
RewriterConfig.CpuLayout
 Enum for layout conversion between NCHW and NHWC on CPU. 
RewriterConfig.CustomGraphOptimizer
 Message to describe custom graph optimizer and its parameters
 
Protobuf type tensorflow.RewriterConfig.CustomGraphOptimizer  
RewriterConfig.CustomGraphOptimizer.Builder
 Message to describe custom graph optimizer and its parameters
 
Protobuf type tensorflow.RewriterConfig.CustomGraphOptimizer  
RewriterConfig.CustomGraphOptimizerOrBuilder  
RewriterConfig.MemOptType Protobuf enum tensorflow.RewriterConfig.MemOptType  
RewriterConfig.NumIterationsType
 Enum controlling the number of times to run optimizers. 
RewriterConfig.Toggle Protobuf enum tensorflow.RewriterConfig.Toggle  
RewriterConfigOrBuilder  
RewriterConfigProtos  
Rfft<U extends TType> Real-valued fast Fourier transform. 
Rfft2d<U extends TType> 2D real-valued fast Fourier transform. 
Rfft3d<U extends TType> 3D real-valued fast Fourier transform. 
RgbToHsv<T extends TNumber> Converts one or more images from RGB to HSV. 
RightShift<T extends TNumber> Elementwise computes the bitwise right-shift of `x` and `y`. 
Rint<T extends TNumber> Returns element-wise integer closest to x. 
RMSProp Optimizer that implements the RMSProp algorithm. 
RngReadAndSkip Advance the counter of a counter-based RNG. 
RngSkip Advance the counter of a counter-based RNG. 
Roll<T extends TType> Rolls the elements of a tensor along an axis. 
Round<T extends TType> Rounds the values of a tensor to the nearest integer, element-wise. 
Rpc Perform batches of RPC requests. 
Rpc.Options Optional attributes for Rpc  
RPCOptions Protobuf type tensorflow.RPCOptions  
RPCOptions.Builder Protobuf type tensorflow.RPCOptions  
RPCOptionsOrBuilder  
Rsqrt<T extends TType> Computes reciprocal of square root of x element-wise. 
RsqrtGrad<T extends TType> Computes the gradient for the rsqrt of `x` wrt its input. 
RunConfiguration
 Run-specific items such as arguments to the test / benchmark. 
RunConfiguration.Builder
 Run-specific items such as arguments to the test / benchmark. 
RunConfigurationOrBuilder  
RunMetadata
 Metadata output (i.e., non-Tensor) for a single Run() call. 
RunMetadata.Builder
 Metadata output (i.e., non-Tensor) for a single Run() call. 
RunMetadata.FunctionGraphs Protobuf type tensorflow.RunMetadata.FunctionGraphs  
RunMetadata.FunctionGraphs.Builder Protobuf type tensorflow.RunMetadata.FunctionGraphs  
RunMetadata.FunctionGraphsOrBuilder  
RunMetadataOrBuilder  
RunOptions
 Options for a single Run() call. 
RunOptions.Builder
 Options for a single Run() call. 
RunOptions.Experimental
 Everything inside Experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat. 
RunOptions.Experimental.Builder
 Everything inside Experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat. 
RunOptions.Experimental.RunHandlerPoolOptions
 Options for run handler thread pool. 
RunOptions.Experimental.RunHandlerPoolOptions.Builder
 Options for run handler thread pool. 
RunOptions.Experimental.RunHandlerPoolOptionsOrBuilder  
RunOptions.ExperimentalOrBuilder  
RunOptions.TraceLevel
 TODO(pbar) Turn this into a TraceOptions proto which allows
 tracing to be controlled in a more orthogonal manner?
 
Protobuf enum tensorflow.RunOptions.TraceLevel  
RunOptionsOrBuilder  

S

SampleDistortedBoundingBox<T extends TNumber> Generate a single randomly distorted bounding box for an image. 
SampleDistortedBoundingBox.Options Optional attributes for SampleDistortedBoundingBox  
SamplingDataset Creates a dataset that takes a Bernoulli sample of the contents of another dataset. 
Save Saves tensors in V2 checkpoint format. 
SaveableObject Protobuf type tensorflow.SaveableObject  
SaveableObject.Builder Protobuf type tensorflow.SaveableObject  
SaveableObjectOrBuilder  
SavedAsset
 A SavedAsset points to an asset in the MetaGraph. 
SavedAsset.Builder
 A SavedAsset points to an asset in the MetaGraph. 
SavedAssetOrBuilder  
SavedBareConcreteFunction Protobuf type tensorflow.SavedBareConcreteFunction  
SavedBareConcreteFunction.Builder Protobuf type tensorflow.SavedBareConcreteFunction  
SavedBareConcreteFunctionOrBuilder  
SavedConcreteFunction
 Stores low-level information about a concrete function. 
SavedConcreteFunction.Builder
 Stores low-level information about a concrete function. 
SavedConcreteFunctionOrBuilder  
SavedConstant Protobuf type tensorflow.SavedConstant  
SavedConstant.Builder Protobuf type tensorflow.SavedConstant  
SavedConstantOrBuilder  
SavedFunction
 A function with multiple signatures, possibly with non-Tensor arguments. 
SavedFunction.Builder
 A function with multiple signatures, possibly with non-Tensor arguments. 
SavedFunctionOrBuilder  
SavedModel
 SavedModel is the high level serialization format for TensorFlow Models. 
SavedModel.Builder
 SavedModel is the high level serialization format for TensorFlow Models. 
SavedModelBundle SavedModelBundle represents a model loaded from storage. 
SavedModelBundle.Exporter Options for exporting a SavedModel. 
SavedModelBundle.Loader Options for loading a SavedModel. 
SavedModelOrBuilder  
SavedModelProtos  
SavedObject Protobuf type tensorflow.SavedObject  
SavedObject.Builder Protobuf type tensorflow.SavedObject  
SavedObject.KindCase  
SavedObjectGraph Protobuf type tensorflow.SavedObjectGraph  
SavedObjectGraph.Builder Protobuf type tensorflow.SavedObjectGraph  
SavedObjectGraphOrBuilder  
SavedObjectGraphProtos  
SavedObjectOrBuilder  
SavedResource
 A SavedResource represents a TF object that holds state during its lifetime. 
SavedResource.Builder
 A SavedResource represents a TF object that holds state during its lifetime. 
SavedResourceOrBuilder  
SavedSlice
 Saved tensor slice: it stores the name of the tensors, the slice, and the
 raw data. 
SavedSlice.Builder
 Saved tensor slice: it stores the name of the tensors, the slice, and the
 raw data. 
SavedSliceMeta
 Metadata describing the set of slices of the same tensor saved in a
 checkpoint file. 
SavedSliceMeta.Builder
 Metadata describing the set of slices of the same tensor saved in a
 checkpoint file. 
SavedSliceMetaOrBuilder  
SavedSliceOrBuilder  
SavedTensorSliceMeta
 Metadata describing the set of tensor slices saved in a checkpoint file. 
SavedTensorSliceMeta.Builder
 Metadata describing the set of tensor slices saved in a checkpoint file. 
SavedTensorSliceMetaOrBuilder  
SavedTensorSliceProtos  
SavedTensorSlices
 Each record in a v3 checkpoint file is a serialized SavedTensorSlices
 message. 
SavedTensorSlices.Builder
 Each record in a v3 checkpoint file is a serialized SavedTensorSlices
 message. 
SavedTensorSlicesOrBuilder  
SavedUserObject
 A SavedUserObject is an object (in the object-oriented language of the
 TensorFlow program) of some user- or framework-defined class other than
 those handled specifically by the other kinds of SavedObjects. 
SavedUserObject.Builder
 A SavedUserObject is an object (in the object-oriented language of the
 TensorFlow program) of some user- or framework-defined class other than
 those handled specifically by the other kinds of SavedObjects. 
SavedUserObjectOrBuilder  
SavedVariable
 Represents a Variable that is initialized by loading the contents from the
 checkpoint. 
SavedVariable.Builder
 Represents a Variable that is initialized by loading the contents from the
 checkpoint. 
SavedVariableOrBuilder  
SaverDef
 Protocol buffer representing the configuration of a Saver. 
SaverDef.Builder
 Protocol buffer representing the configuration of a Saver. 
SaverDef.CheckpointFormatVersion
 A version number that identifies a different on-disk checkpoint format. 
SaverDefOrBuilder  
SaverProtos  
SaveSliceInfoDef Protobuf type tensorflow.SaveSliceInfoDef  
SaveSliceInfoDef.Builder Protobuf type tensorflow.SaveSliceInfoDef  
SaveSliceInfoDefOrBuilder  
SaveSlices Saves input tensors slices to disk. 
ScalarSummary Outputs a `Summary` protocol buffer with scalar values. 
ScaleAndTranslate  
ScaleAndTranslate.Options Optional attributes for ScaleAndTranslate  
ScaleAndTranslateGrad<T extends TNumber>  
ScaleAndTranslateGrad.Options Optional attributes for ScaleAndTranslateGrad  
ScatterAdd<T extends TType> Adds sparse updates to a variable reference. 
ScatterAdd.Options Optional attributes for ScatterAdd  
ScatterDiv<T extends TType> Divides a variable reference by sparse updates. 
ScatterDiv.Options Optional attributes for ScatterDiv  
ScatterMax<T extends TNumber> Reduces sparse updates into a variable reference using the `max` operation. 
ScatterMax.Options Optional attributes for ScatterMax  
ScatterMin<T extends TNumber> Reduces sparse updates into a variable reference using the `min` operation. 
ScatterMin.Options Optional attributes for ScatterMin  
ScatterMul<T extends TType> Multiplies sparse updates into a variable reference. 
ScatterMul.Options Optional attributes for ScatterMul  
ScatterNd<U extends TType> Scatter `updates` into a new tensor according to `indices`. 
ScatterNdAdd<T extends TType> Applies sparse addition to individual values or slices in a Variable. 
ScatterNdAdd.Options Optional attributes for ScatterNdAdd  
ScatterNdMax<T extends TType> Computes element-wise maximum. 
ScatterNdMax.Options Optional attributes for ScatterNdMax  
ScatterNdMin<T extends TType> Computes element-wise minimum. 
ScatterNdMin.Options Optional attributes for ScatterNdMin  
ScatterNdNonAliasingAdd<T extends TType> Applies sparse addition to `input` using individual values or slices

from `updates` according to indices `indices`. 

ScatterNdSub<T extends TType> Applies sparse subtraction to individual values or slices in a Variable. 
ScatterNdSub.Options Optional attributes for ScatterNdSub  
ScatterNdUpdate<T extends TType> Applies sparse `updates` to individual values or slices within a given

variable according to `indices`. 

ScatterNdUpdate.Options Optional attributes for ScatterNdUpdate  
ScatterSub<T extends TType> Subtracts sparse updates to a variable reference. 
ScatterSub.Options Optional attributes for ScatterSub  
ScatterUpdate<T extends TType> Applies sparse updates to a variable reference. 
ScatterUpdate.Options Optional attributes for ScatterUpdate  
Scope Manages groups of related properties when creating Tensorflow Operations, such as a common name prefix. 
ScopedAllocatorOptions Protobuf type tensorflow.ScopedAllocatorOptions  
ScopedAllocatorOptions.Builder Protobuf type tensorflow.ScopedAllocatorOptions  
ScopedAllocatorOptionsOrBuilder  
SdcaFprint Computes fingerprints of the input strings. 
SdcaOptimizer Distributed version of Stochastic Dual Coordinate Ascent (SDCA) optimizer for

linear models with L1 + L2 regularization. 

SdcaOptimizer.Options Optional attributes for SdcaOptimizer  
SdcaShrinkL1 Applies L1 regularization shrink step on the parameters. 
SegmentMax<T extends TNumber> Computes the maximum along segments of a tensor. 
SegmentMean<T extends TType> Computes the mean along segments of a tensor. 
SegmentMin<T extends TNumber> Computes the minimum along segments of a tensor. 
SegmentProd<T extends TType> Computes the product along segments of a tensor. 
SegmentSum<T extends TType> Computes the sum along segments of a tensor. 
Select<T extends TType>  
SelfAdjointEig<T extends TType> Computes the eigen decomposition of one or more square self-adjoint matrices. 
SelfAdjointEig<T extends TType> Computes the eigen decomposition of a batch of self-adjoint matrices

(Note: Only real inputs are supported). 

SelfAdjointEig.Options Optional attributes for SelfAdjointEig  
Selu<T extends TNumber> Computes scaled exponential linear: `scale * alpha * (exp(features) - 1)`

if < 0, `scale * features` otherwise. 

SELU<T extends TFloating> Scaled Exponential Linear Unit (SELU). 
SeluGrad<T extends TNumber> Computes gradients for the scaled exponential linear (Selu) operation. 
Send Sends the named tensor from send_device to recv_device. 
Send Sends the named tensor to another XLA computation. 
Send.Options Optional attributes for Send  
SendTPUEmbeddingGradients Performs gradient updates of embedding tables. 
SequenceExample Protobuf type tensorflow.SequenceExample  
SequenceExample.Builder Protobuf type tensorflow.SequenceExample  
SequenceExampleOrBuilder  
SerializeIterator Converts the given `resource_handle` representing an iterator to a variant tensor. 
SerializeIterator.Options Optional attributes for SerializeIterator  
SerializeManySparse<U extends TType> Serialize an `N`-minibatch `SparseTensor` into an `[N, 3]` `Tensor` object. 
SerializeSparse<U extends TType> Serialize a `SparseTensor` into a `[3]` `Tensor` object. 
SerializeTensor Transforms a Tensor into a serialized TensorProto proto. 
Server An in-process TensorFlow server, for use in distributed training. 
ServerDef
 Defines the configuration of a single TensorFlow server. 
ServerDef.Builder
 Defines the configuration of a single TensorFlow server. 
ServerDefOrBuilder  
ServerProtos  
ServiceConfig  
ServiceConfig.DispatcherConfig
 Configuration for a tf.data service DispatchServer. 
ServiceConfig.DispatcherConfig.Builder
 Configuration for a tf.data service DispatchServer. 
ServiceConfig.DispatcherConfigOrBuilder  
ServiceConfig.WorkerConfig
 Configuration for a tf.data service WorkerServer. 
ServiceConfig.WorkerConfig.Builder
 Configuration for a tf.data service WorkerServer. 
ServiceConfig.WorkerConfigOrBuilder  
Session Driver for Graph execution. 
Session.Run Output tensors and metadata obtained when executing a session. 
Session.Runner Run Operations and evaluate Tensors
SessionLog
 Protocol buffer used for logging session state. 
SessionLog.Builder
 Protocol buffer used for logging session state. 
SessionLog.SessionStatus Protobuf enum tensorflow.SessionLog.SessionStatus  
SessionLogOrBuilder  
SessionMetadata
 Metadata about the session. 
SessionMetadata.Builder
 Metadata about the session. 
SessionMetadataOrBuilder  
SetDiff1d<T extends TType, U extends TNumber> Computes the difference between two lists of numbers or strings. 
SetSize Number of unique elements along last dimension of input `set`. 
SetSize.Options Optional attributes for SetSize  
SetsOps Implementation of set operations  
SetsOps.Operation Enumeration containing the string operation values to be passed to the TensorFlow Sparse Ops function ERROR(/SparseOps#denseToDenseSetOperation)  
SetStatsAggregatorDataset  
SetStatsAggregatorDataset  
Shape The shape of a Tensor or NdArray
Shape<U extends TNumber> Returns the shape of a tensor. 
Shape_inference_func_TF_ShapeInferenceContext_TF_Status  
Shaped Any data container with a given Shape
ShapeN<U extends TNumber> Returns shape of tensors. 
Shapes An operator providing methods on org.tensorflow.op.core.Shape tensors and 1d operands that represent the dimensions of a shape. 
ShapeUtils Various methods for processing with Shapes and Operands  
ShardDataset Creates a `Dataset` that includes only 1/`num_shards` of this dataset. 
ShardDataset.Options Optional attributes for ShardDataset  
ShardedFilename Generate a sharded filename. 
ShardedFilespec Generate a glob pattern matching all sharded file names. 
Sharding<T extends TType> An op which shards the input based on the given sharding attribute. 
ShortDataBuffer A DataBuffer of shorts. 
ShortDataLayout<S extends DataBuffer<?>> A DataLayout that converts data stored in a buffer to shorts. 
ShortDenseNdArray  
ShortNdArray An NdArray of shorts. 
ShuffleAndRepeatDataset  
ShuffleAndRepeatDataset.Options Optional attributes for ShuffleAndRepeatDataset  
ShuffleDataset  
ShuffleDataset.Options Optional attributes for ShuffleDataset  
ShutdownDistributedTPU Shuts down a running distributed TPU system. 
Sigmoid<T extends TFloating> Sigmoid activation. 
Sigmoid<T extends TType> Computes sigmoid of `x` element-wise. 
SigmoidCrossEntropyWithLogits  
SigmoidGrad<T extends TType> Computes the gradient of the sigmoid of `x` wrt its input. 
Sign<T extends TType> Returns an element-wise indication of the sign of a number. 
Signature Describe the inputs and outputs of an executable entity, such as a ConcreteFunction, among other useful metadata. 
Signature.Builder Builds a new function signature. 
Signature.TensorDescription  
SignatureDef
 SignatureDef defines the signature of a computation supported by a TensorFlow
 graph. 
SignatureDef.Builder
 SignatureDef defines the signature of a computation supported by a TensorFlow
 graph. 
SignatureDefOrBuilder  
Sin<T extends TType> Computes sine of x element-wise. 
SingleElementSequence<T, U extends NdArray<T>> A sequence of one single element 
Sinh<T extends TType> Computes hyperbolic sine of x element-wise. 
Size<U extends TNumber> Returns the size of a tensor. 
SkipDataset  
SkipDataset Creates a dataset that skips `count` elements from the `input_dataset`. 
Skipgram Parses a text file and creates a batch of examples. 
Skipgram.Options Optional attributes for Skipgram  
SleepDataset  
SleepDataset  
Slice<T extends TType> Return a slice from 'input'. 
SlicingElementSequence<T, U extends NdArray<T>> A sequence creating a new NdArray instance (slice) for each element of an iteration 
SlidingWindowDataset Creates a dataset that passes a sliding window over `input_dataset`. 
SlidingWindowDataset Creates a dataset that passes a sliding window over `input_dataset`. 
Snapshot<T extends TType> Returns a copy of the input tensor. 
SnapShot Protobuf type tensorflow.SnapShot  
SnapShot.Builder Protobuf type tensorflow.SnapShot  
SnapshotMetadataRecord
 This stores the metadata information present in each snapshot record. 
SnapshotMetadataRecord.Builder
 This stores the metadata information present in each snapshot record. 
SnapshotMetadataRecordOrBuilder  
SnapShotOrBuilder  
SnapshotProtos  
SnapshotRecord
 Each SnapshotRecord represents one batch of pre-processed input data. 
SnapshotRecord.Builder
 Each SnapshotRecord represents one batch of pre-processed input data. 
SnapshotRecordOrBuilder  
SnapshotTensorMetadata
 Metadata for all the tensors in a Snapshot Record. 
SnapshotTensorMetadata.Builder
 Metadata for all the tensors in a Snapshot Record. 
SnapshotTensorMetadataOrBuilder  
SobolSample<T extends TNumber> Generates points from the Sobol sequence. 
Softmax<T extends TFloating> Softmax converts a real vector to a vector of categorical probabilities. 
Softmax<T extends TNumber> Computes softmax activations. 
SoftmaxCrossEntropyWithLogits  
SoftmaxCrossEntropyWithLogits<T extends TNumber> Computes softmax cross entropy cost and gradients to backpropagate. 
Softplus<T extends TFloating> Softplus activation function, softplus(x) = log(exp(x) + 1)
Softplus<T extends TNumber> Computes softplus: `log(exp(features) + 1)`. 
SoftplusGrad<T extends TNumber> Computes softplus gradients for a softplus operation. 
Softsign<T extends TFloating> Softsign activation function, softsign(x) = x / (abs(x) + 1)
Softsign<T extends TNumber> Computes softsign: `features / (abs(features) + 1)`. 
SoftsignGrad<T extends TNumber> Computes softsign gradients for a softsign operation. 
Solve<T extends TType> Solves systems of linear equations. 
Solve.Options Optional attributes for Solve  
Sort<T extends TType> Wraps the XLA Sort operator, documented at

https://www.tensorflow.org/performance/xla/operation_semantics#sort . 

SourceFile
 Content of a source file involved in the execution of the debugged TensorFlow
 program. 
SourceFile.Builder
 Content of a source file involved in the execution of the debugged TensorFlow
 program. 
SourceFileOrBuilder  
SpaceToBatch<T extends TType> SpaceToBatch for 4-D tensors of type T. 
SpaceToBatchNd<T extends TType> SpaceToBatch for N-D tensors of type T. 
SpaceToDepth<T extends TType> SpaceToDepth for tensors of type T. 
SpaceToDepth.Options Optional attributes for SpaceToDepth  
SparseAccumulatorApplyGradient Applies a sparse gradient to a given accumulator. 
SparseAccumulatorTakeGradient<T extends TType> Extracts the average sparse gradient in a SparseConditionalAccumulator. 
SparseAdd<T extends TType> Adds two `SparseTensor` objects to produce another `SparseTensor`. 
SparseAddGrad<T extends TType> The gradient operator for the SparseAdd op. 
SparseApplyAdadelta<T extends TType> var: Should be from a Variable(). 
SparseApplyAdadelta.Options Optional attributes for SparseApplyAdadelta  
SparseApplyAdagrad<T extends TType> Update relevant entries in '*var' and '*accum' according to the adagrad scheme. 
SparseApplyAdagrad.Options Optional attributes for SparseApplyAdagrad  
SparseApplyAdagradDa<T extends TType> Update entries in '*var' and '*accum' according to the proximal adagrad scheme. 
SparseApplyAdagradDa.Options Optional attributes for SparseApplyAdagradDa  
SparseApplyCenteredRmsProp<T extends TType> Update '*var' according to the centered RMSProp algorithm. 
SparseApplyCenteredRmsProp.Options Optional attributes for SparseApplyCenteredRmsProp  
SparseApplyFtrl<T extends TType> Update relevant entries in '*var' according to the Ftrl-proximal scheme. 
SparseApplyFtrl.Options Optional attributes for SparseApplyFtrl  
SparseApplyMomentum<T extends TType> Update relevant entries in '*var' and '*accum' according to the momentum scheme. 
SparseApplyMomentum.Options Optional attributes for SparseApplyMomentum  
SparseApplyProximalAdagrad<T extends TType> Sparse update entries in '*var' and '*accum' according to FOBOS algorithm. 
SparseApplyProximalAdagrad.Options Optional attributes for SparseApplyProximalAdagrad  
SparseApplyProximalGradientDescent<T extends TType> Sparse update '*var' as FOBOS algorithm with fixed learning rate. 
SparseApplyProximalGradientDescent.Options Optional attributes for SparseApplyProximalGradientDescent  
SparseApplyRmsProp<T extends TType> Update '*var' according to the RMSProp algorithm. 
SparseApplyRmsProp.Options Optional attributes for SparseApplyRmsProp  
SparseBincount<U extends TNumber> Counts the number of occurrences of each value in an integer array. 
SparseBincount.Options Optional attributes for SparseBincount  
SparseCategoricalCrossentropy Computes the crossentropy loss between labels and predictions. 
SparseCategoricalCrossentropy<T extends TNumber> A metric that computes the sparse categorical cross-entropy loss between true labels and predicted labels. 
SparseConcat<T extends TType> Concatenates a list of `SparseTensor` along the specified dimension. 
SparseConditionalAccumulator A conditional accumulator for aggregating sparse gradients. 
SparseConditionalAccumulator.Options Optional attributes for SparseConditionalAccumulator  
SparseCountSparseOutput<U extends TNumber> Performs sparse-output bin counting for a sparse tensor input. 
SparseCountSparseOutput.Options Optional attributes for SparseCountSparseOutput  
SparseCross Generates sparse cross from a list of sparse and dense tensors. 
SparseCrossHashed Generates sparse cross from a list of sparse and dense tensors. 
SparseDenseCwiseAdd<T extends TType> Adds up a SparseTensor and a dense Tensor, using these special rules:

(1) Broadcasts the dense side to have the same shape as the sparse side, if eligible; (2) Then, only the dense values pointed to by the indices of the SparseTensor participate in the cwise addition. 

SparseDenseCwiseDiv<T extends TType> Component-wise divides a SparseTensor by a dense Tensor. 
SparseDenseCwiseMul<T extends TType> Component-wise multiplies a SparseTensor by a dense Tensor. 
SparseFillEmptyRows<T extends TType> Fills empty rows in the input 2-D `SparseTensor` with a default value. 
SparseFillEmptyRowsGrad<T extends TType> The gradient of SparseFillEmptyRows. 
SparseMatMul Multiply matrix "a" by matrix "b". 
SparseMatMul.Options Optional attributes for SparseMatMul  
SparseMatrixAdd Sparse addition of two CSR matrices, C = alpha * A + beta * B. 
SparseMatrixMatMul<T extends TType> Matrix-multiplies a sparse matrix with a dense matrix. 
SparseMatrixMatMul.Options Optional attributes for SparseMatrixMatMul  
SparseMatrixMul Element-wise multiplication of a sparse matrix with a dense tensor. 
SparseMatrixNNZ Returns the number of nonzeroes of `sparse_matrix`. 
SparseMatrixOrderingAMD Computes the Approximate Minimum Degree (AMD) ordering of `input`. 
SparseMatrixSoftmax Calculates the softmax of a CSRSparseMatrix. 
SparseMatrixSoftmaxGrad Calculates the gradient of the SparseMatrixSoftmax op. 
SparseMatrixSparseCholesky Computes the sparse Cholesky decomposition of `input`. 
SparseMatrixSparseMatMul Sparse-matrix-multiplies two CSR matrices `a` and `b`. 
SparseMatrixSparseMatMul.Options Optional attributes for SparseMatrixSparseMatMul  
SparseMatrixTranspose Transposes the inner (matrix) dimensions of a CSRSparseMatrix. 
SparseMatrixTranspose.Options Optional attributes for SparseMatrixTranspose  
SparseMatrixZeros Creates an all-zeros CSRSparseMatrix with shape `dense_shape`. 
SparseReduceMax<T extends TNumber> Computes the max of elements across dimensions of a SparseTensor. 
SparseReduceMax.Options Optional attributes for SparseReduceMax  
SparseReduceMaxSparse<T extends TNumber> Computes the max of elements across dimensions of a SparseTensor. 
SparseReduceMaxSparse.Options Optional attributes for SparseReduceMaxSparse  
SparseReduceSum<T extends TType> Computes the sum of elements across dimensions of a SparseTensor. 
SparseReduceSum.Options Optional attributes for SparseReduceSum  
SparseReduceSumSparse<T extends TType> Computes the sum of elements across dimensions of a SparseTensor. 
SparseReduceSumSparse.Options Optional attributes for SparseReduceSumSparse  
SparseReorder<T extends TType> Reorders a SparseTensor into the canonical, row-major ordering. 
SparseReshape Reshapes a SparseTensor to represent values in a new dense shape. 
SparseSegmentMean<T extends TNumber> Computes the mean along sparse segments of a tensor. 
SparseSegmentMeanGrad<T extends TNumber> Computes gradients for SparseSegmentMean. 
SparseSegmentMeanWithNumSegments<T extends TNumber> Computes the mean along sparse segments of a tensor. 
SparseSegmentSqrtN<T extends TNumber> Computes the sum along sparse segments of a tensor divided by the sqrt of N. 
SparseSegmentSqrtNGrad<T extends TNumber> Computes gradients for SparseSegmentSqrtN. 
SparseSegmentSqrtNWithNumSegments<T extends TNumber> Computes the sum along sparse segments of a tensor divided by the sqrt of N. 
SparseSegmentSum<T extends TNumber> Computes the sum along sparse segments of a tensor. 
SparseSegmentSumWithNumSegments<T extends TNumber> Computes the sum along sparse segments of a tensor. 
SparseSlice<T extends TType> Slice a `SparseTensor` based on the `start` and `size`. 
SparseSliceGrad<T extends TType> The gradient operator for the SparseSlice op. 
SparseSoftmax<T extends TNumber> Applies softmax to a batched N-D `SparseTensor`. 
SparseSoftmaxCrossEntropyWithLogits  
SparseSoftmaxCrossEntropyWithLogits<T extends TNumber> Computes softmax cross entropy cost and gradients to backpropagate. 
SparseSparseMaximum<T extends TNumber> Returns the element-wise max of two SparseTensors. 
SparseSparseMinimum<T extends TType> Returns the element-wise min of two SparseTensors. 
SparseSplit<T extends TType> Split a `SparseTensor` into `num_split` tensors along one dimension. 
SparseTensorDenseAdd<U extends TType> Adds up a `SparseTensor` and a dense `Tensor`, producing a dense `Tensor`. 
SparseTensorDenseMatMul<U extends TType> Multiply SparseTensor (of rank 2) "A" by dense matrix "B". 
SparseTensorDenseMatMul.Options Optional attributes for SparseTensorDenseMatMul  
SparseTensorSliceDataset Creates a dataset that splits a SparseTensor into elements row-wise. 
SparseTensorToCSRSparseMatrix Converts a SparseTensor to a (possibly batched) CSRSparseMatrix. 
SparseToDense<U extends TType> Converts a sparse representation into a dense tensor. 
SparseToDense.Options Optional attributes for SparseToDense  
SparseToSparseSetOperation<T extends TType> Applies set operation along last dimension of 2 `SparseTensor` inputs. 
SparseToSparseSetOperation.Options Optional attributes for SparseToSparseSetOperation  
SpecializedType
 For identifying the underlying type of a variant. 
Spence<T extends TNumber>  
Split<T extends TType> Splits a tensor into `num_split` tensors along one dimension. 
SplitV<T extends TType> Splits a tensor into `num_split` tensors along one dimension. 
SqlDataset Creates a dataset that executes a SQL query and emits rows of the result set. 
SqlDataset Creates a dataset that executes a SQL query and emits rows of the result set. 
Sqrt<T extends TType> Computes square root of x element-wise. 
SqrtGrad<T extends TType> Computes the gradient for the sqrt of `x` wrt its input. 
Sqrtm<T extends TType> Computes the matrix square root of one or more square matrices:

matmul(sqrtm(A), sqrtm(A)) = A

The input matrix should be invertible. 

Square<T extends TType> Computes square of x element-wise. 
SquaredDifference<T extends TType> Returns conj(x - y)(x - y) element-wise. 
SquaredHinge Computes the squared hinge loss between labels and predictions. 
SquaredHinge<T extends TNumber> A metric that computes the squared hinge loss metric between labels and predictions. 
Squeeze<T extends TType> Removes dimensions of size 1 from the shape of a tensor. 
Squeeze.Options Optional attributes for Squeeze  
Stack<T extends TType> Packs a list of `N` rank-`R` tensors into one rank-`(R+1)` tensor. 
Stack.Options Optional attributes for Stack  
StackFrameWithId
 A stack frame with ID. 
StackFrameWithId.Builder
 A stack frame with ID. 
StackFrameWithIdOrBuilder  
Stage Stage values similar to a lightweight Enqueue. 
Stage.Options Optional attributes for Stage  
StageClear Op removes all elements in the underlying container. 
StageClear.Options Optional attributes for StageClear  
StagePeek Op peeks at the values at the specified index. 
StagePeek.Options Optional attributes for StagePeek  
StageSize Op returns the number of elements in the underlying container. 
StageSize.Options Optional attributes for StageSize  
StatefulRandomBinomial<V extends TNumber>  
StatefulStandardNormal<U extends TType> Outputs random values from a normal distribution. 
StatefulTruncatedNormal<U extends TType> Outputs random values from a truncated normal distribution. 
StatefulUniform<U extends TType> Outputs random values from a uniform distribution. 
StatefulUniformFullInt<U extends TType> Outputs random integers from a uniform distribution. 
StatefulUniformInt<U extends TType> Outputs random integers from a uniform distribution. 
StatelessMultinomial<V extends TNumber> Draws samples from a multinomial distribution. 
StatelessParameterizedTruncatedNormal<V extends TNumber>  
StatelessRandomBinomial<W extends TNumber> Outputs deterministic pseudorandom random numbers from a binomial distribution. 
StatelessRandomGamma<V extends TNumber> Outputs deterministic pseudorandom random numbers from a gamma distribution. 
StatelessRandomGetKeyCounterAlg Picks the best algorithm based on device, and scrambles seed into key and counter. 
StatelessRandomNormal<V extends TNumber> Outputs deterministic pseudorandom values from a normal distribution. 
StatelessRandomNormalV2<U extends TNumber> Outputs deterministic pseudorandom values from a normal distribution. 
StatelessRandomPoisson<W extends TNumber> Outputs deterministic pseudorandom random numbers from a Poisson distribution. 
StatelessRandomUniform<V extends TNumber> Outputs deterministic pseudorandom random values from a uniform distribution. 
StatelessRandomUniformFullInt<V extends TNumber> Outputs deterministic pseudorandom random integers from a uniform distribution. 
StatelessRandomUniformFullIntV2<U extends TNumber> Outputs deterministic pseudorandom random integers from a uniform distribution. 
StatelessRandomUniformInt<V extends TNumber> Outputs deterministic pseudorandom random integers from a uniform distribution. 
StatelessRandomUniformIntV2<U extends TNumber> Outputs deterministic pseudorandom random integers from a uniform distribution. 
StatelessRandomUniformV2<U extends TNumber> Outputs deterministic pseudorandom random values from a uniform distribution. 
StatelessSampleDistortedBoundingBox<T extends TNumber> Generate a randomly distorted bounding box for an image deterministically. 
StatelessSampleDistortedBoundingBox.Options Optional attributes for StatelessSampleDistortedBoundingBox  
StatelessTruncatedNormal<V extends TNumber> Outputs deterministic pseudorandom values from a truncated normal distribution. 
StatelessTruncatedNormalV2<U extends TNumber> Outputs deterministic pseudorandom values from a truncated normal distribution. 
StaticRegexFullMatch Check if the input matches the regex pattern. 
StaticRegexReplace Replaces the match of pattern in input with rewrite. 
StaticRegexReplace.Options Optional attributes for StaticRegexReplace  
StatsAggregatorHandle Creates a statistics manager resource. 
StatsAggregatorHandle  
StatsAggregatorHandle.Options Optional attributes for StatsAggregatorHandle  
StatsAggregatorHandle.Options Optional attributes for StatsAggregatorHandle  
StatsAggregatorSetSummaryWriter Set a summary_writer_interface to record statistics using given stats_aggregator. 
StatsAggregatorSummary Produces a summary of any statistics recorded by the given statistics manager. 
StatsAggregatorSummary Produces a summary of any statistics recorded by the given statistics manager. 
StdArrays Utility class for working with NdArray instances mixed with standard Java arrays. 
StepStats Protobuf type tensorflow.StepStats  
StepStats.Builder Protobuf type tensorflow.StepStats  
StepStatsOrBuilder  
StepStatsProtos  
StopGradient<T extends TType> Stops gradient computation. 
StridedSlice<T extends TType> Return a strided slice from `input`. 
StridedSlice.Options Optional attributes for StridedSlice  
StridedSliceAssign<T extends TType> Assign `value` to the sliced l-value reference of `ref`. 
StridedSliceAssign.Options Optional attributes for StridedSliceAssign  
StridedSliceGrad<U extends TType> Returns the gradient of `StridedSlice`. 
StridedSliceGrad.Options Optional attributes for StridedSliceGrad  
StridedSliceHelper Helper endpoint methods for Python like indexing. 
StringFormat Formats a string template using a list of tensors. 
StringFormat.Options Optional attributes for StringFormat  
StringLayout Data layout that converts a String to/from a sequence of bytes applying a given charset. 
StringLength String lengths of `input`. 
StringLength.Options Optional attributes for StringLength  
StringNGrams<T extends TNumber> Creates ngrams from ragged string data. 
StringSplit Split elements of `source` based on `sep` into a `SparseTensor`. 
StringSplit.Options Optional attributes for StringSplit  
Strip Strip leading and trailing whitespaces from the Tensor. 
StructProtos  
StructuredValue
 `StructuredValue` represents a dynamically typed value representing various
 data structures that are inspired by Python data structures typically used in
 TensorFlow functions as inputs and outputs. 
StructuredValue.Builder
 `StructuredValue` represents a dynamically typed value representing various
 data structures that are inspired by Python data structures typically used in
 TensorFlow functions as inputs and outputs. 
StructuredValue.KindCase  
StructuredValueOrBuilder  
Sub<T extends TType> Returns x - y element-wise. 
Substr Return substrings from `Tensor` of strings. 
Substr.Options Optional attributes for Substr  
Sum<T extends TType> Computes the sum of elements across dimensions of a tensor. 
Sum.Options Optional attributes for Sum  
Summary
 A Summary is a set of named values to be displayed by the
 visualizer. 
Summary.Audio Protobuf type tensorflow.Summary.Audio  
Summary.Audio.Builder Protobuf type tensorflow.Summary.Audio  
Summary.AudioOrBuilder  
Summary.Builder
 A Summary is a set of named values to be displayed by the
 visualizer. 
Summary.Image Protobuf type tensorflow.Summary.Image  
Summary.Image.Builder Protobuf type tensorflow.Summary.Image  
Summary.ImageOrBuilder  
Summary.Value Protobuf type tensorflow.Summary.Value  
Summary.Value.Builder Protobuf type tensorflow.Summary.Value  
Summary.Value.ValueCase  
Summary.ValueOrBuilder  
SummaryDescription
 Metadata associated with a series of Summary data
 
Protobuf type tensorflow.SummaryDescription  
SummaryDescription.Builder
 Metadata associated with a series of Summary data
 
Protobuf type tensorflow.SummaryDescription  
SummaryDescriptionOrBuilder  
SummaryMetadata
 A SummaryMetadata encapsulates information on which plugins are able to make
 use of a certain summary value. 
SummaryMetadata.Builder
 A SummaryMetadata encapsulates information on which plugins are able to make
 use of a certain summary value. 
SummaryMetadata.PluginData Protobuf type tensorflow.SummaryMetadata.PluginData  
SummaryMetadata.PluginData.Builder Protobuf type tensorflow.SummaryMetadata.PluginData  
SummaryMetadata.PluginDataOrBuilder  
SummaryMetadataOrBuilder  
SummaryOrBuilder  
SummaryProtos  
SummaryWriter  
SummaryWriter.Options Optional attributes for SummaryWriter  
Svd<T extends TType> Computes the singular value decompositions of one or more matrices. 
Svd<T extends TType> Computes the eigen decomposition of a batch of self-adjoint matrices

(Note: Only real inputs are supported). 

Svd.Options Optional attributes for Svd  
Swish<T extends TFloating> Swish activation function. 
SwitchCond<T extends TType> Forwards `data` to the output port determined by `pred`. 

T

TaggedRunMetadata
 For logging the metadata output for a single session.run() call. 
TaggedRunMetadata.Builder
 For logging the metadata output for a single session.run() call. 
TaggedRunMetadataOrBuilder  
TakeDataset  
TakeDataset Creates a dataset that contains `count` elements from the `input_dataset`. 
TakeManySparseFromTensorsMap<T extends TType> Read `SparseTensors` from a `SparseTensorsMap` and concatenate them. 
TakeManySparseFromTensorsMap.Options Optional attributes for TakeManySparseFromTensorsMap  
Tan<T extends TType> Computes tan of x element-wise. 
Tanh<T extends TFloating> Hyperbolic tangent activation function. 
Tanh<T extends TType> Computes hyperbolic tangent of `x` element-wise. 
TanhGrad<T extends TType> Computes the gradient for the tanh of `x` wrt its input. 
TaskDeviceFilters
 Defines the device filters for a remote task. 
TaskDeviceFilters.Builder
 Defines the device filters for a remote task. 
TaskDeviceFiltersOrBuilder  
TBfloat16 Brain 16-bit float tensor type. 
TBfloat16Mapper Maps memory of DT_BFLOAT16 tensors to a n-dimensional data space. 
TBool Boolean tensor type. 
TBoolMapper Maps memory of DT_BOOL tensors to a n-dimensional data space. 
TemporaryVariable<T extends TType> Returns a tensor that may be mutated, but only persists within a single step. 
TemporaryVariable.Options Optional attributes for TemporaryVariable  
Tensor A statically typed multi-dimensional array. 
Tensor  
TensorArray An array of Tensors of given size. 
TensorArray.Options Optional attributes for TensorArray  
TensorArrayClose Delete the TensorArray from its resource container. 
TensorArrayConcat<T extends TType> Concat the elements from the TensorArray into value `value`. 
TensorArrayConcat.Options Optional attributes for TensorArrayConcat  
TensorArrayGather<T extends TType> Gather specific elements from the TensorArray into output `value`. 
TensorArrayGather.Options Optional attributes for TensorArrayGather  
TensorArrayGrad Creates a TensorArray for storing the gradients of values in the given handle. 
TensorArrayGradWithShape Creates a TensorArray for storing multiple gradients of values in the given handle. 
TensorArrayPack<T extends TType>  
TensorArrayPack.Options Optional attributes for TensorArrayPack  
TensorArrayRead<T extends TType> Read an element from the TensorArray into output `value`. 
TensorArrayScatter Scatter the data from the input value into specific TensorArray elements. 
TensorArraySize Get the current size of the TensorArray. 
TensorArraySplit Split the data from the input value into TensorArray elements. 
TensorArrayUnpack  
TensorArrayWrite Push an element onto the tensor_array. 
TensorBuffers Maps native tensor memory into DataBuffers, allowing I/O operations from the JVM. 
TensorBundleProtos  
TensorConnection
 Defines a connection between two tensors in a `GraphDef`. 
TensorConnection.Builder
 Defines a connection between two tensors in a `GraphDef`. 
TensorConnectionOrBuilder  
TensorDataset Creates a dataset that emits `components` as a tuple of tensors once. 
TensorDebugMode
 Available modes for extracting debugging information from a Tensor. 
TensorDescription Protobuf type tensorflow.TensorDescription  
TensorDescription.Builder Protobuf type tensorflow.TensorDescription  
TensorDescriptionOrBuilder  
TensorDescriptionProtos  
TensorDiag<T extends TType> Returns a diagonal tensor with a given diagonal values. 
TensorDiagPart<T extends TType> Returns the diagonal part of the tensor. 
TensorFlow Static utility methods describing the TensorFlow runtime. 
tensorflow  
tensorflow  
TensorFlowException Unchecked exception thrown by TensorFlow core classes  
TensorForestCreateTreeVariable Creates a tree resource and returns a handle to it. 
TensorForestTreeDeserialize Deserializes a proto into the tree handle  
TensorForestTreeIsInitializedOp Checks whether a tree has been initialized. 
TensorForestTreePredict Output the logits for the given input data  
TensorForestTreeResourceHandleOp Creates a handle to a TensorForestTreeResource  
TensorForestTreeResourceHandleOp.Options Optional attributes for TensorForestTreeResourceHandleOp  
TensorForestTreeSerialize Serializes the tree handle to a proto  
TensorForestTreeSize Get the number of nodes in a tree  
TensorInfo
 Information about a Tensor necessary for feeding or retrieval. 
TensorInfo.Builder
 Information about a Tensor necessary for feeding or retrieval. 
TensorInfo.CompositeTensor
 Generic encoding for composite tensors. 
TensorInfo.CompositeTensor.Builder
 Generic encoding for composite tensors. 
TensorInfo.CompositeTensorOrBuilder  
TensorInfo.CooSparse
 For sparse tensors, The COO encoding stores a triple of values, indices,
 and shape. 
TensorInfo.CooSparse.Builder
 For sparse tensors, The COO encoding stores a triple of values, indices,
 and shape. 
TensorInfo.CooSparseOrBuilder  
TensorInfo.EncodingCase  
TensorInfoOrBuilder  
TensorListConcat<U extends TType> Concats all tensors in the list along the 0th dimension. 
TensorListConcatLists  
TensorListElementShape<T extends TNumber> The shape of the elements of the given list, as a tensor. 
TensorListFromTensor Creates a TensorList which, when stacked, has the value of `tensor`. 
TensorListGather<T extends TType> Creates a Tensor by indexing into the TensorList. 
TensorListGetItem<T extends TType>  
TensorListLength Returns the number of tensors in the input tensor list. 
TensorListPopBack<T extends TType> Returns the last element of the input list as well as a list with all but that element. 
TensorListPushBack Returns a list which has the passed-in `Tensor` as last element and the other elements of the given list in `input_handle`. 
TensorListPushBackBatch  
TensorListReserve List of the given size with empty elements. 
TensorListResize Resizes the list. 
TensorListScatter Creates a TensorList by indexing into a Tensor. 
TensorListScatterIntoExistingList Scatters tensor at indices in an input list. 
TensorListSetItem  
TensorListSplit Splits a tensor into a list. 
TensorListStack<T extends TType> Stacks all tensors in the list. 
TensorListStack.Options Optional attributes for TensorListStack  
TensorMapErase Returns a tensor map with item from given key erased. 
TensorMapHasKey Returns whether the given key exists in the map. 
TensorMapInsert Returns a map that is the 'input_handle' with the given key-value pair inserted. 
TensorMapLookup<U extends TType> Returns the value from a given key in a tensor map. 
TensorMapper<T extends TType> Maps the native memory of a RawTensor to a n-dimensional typed data space accessible from the JVM. 
TensorMapSize Returns the number of tensors in the input tensor map. 
TensorMapStackKeys<T extends TType> Returns a Tensor stack of all keys in a tensor map. 
TensorMetadata
 Metadata for a single tensor in the Snapshot Record. 
TensorMetadata.Builder
 Metadata for a single tensor in the Snapshot Record. 
TensorMetadataOrBuilder  
TensorProto
 Protocol buffer representing a tensor. 
TensorProto.Builder
 Protocol buffer representing a tensor. 
TensorProtoOrBuilder  
TensorProtos  
TensorScatterNdAdd<T extends TType> Adds sparse `updates` to an existing tensor according to `indices`. 
TensorScatterNdMax<T extends TType>  
TensorScatterNdMin<T extends TType>  
TensorScatterNdSub<T extends TType> Subtracts sparse `updates` from an existing tensor according to `indices`. 
TensorScatterNdUpdate<T extends TType> Scatter `updates` into an existing tensor according to `indices`. 
TensorShapeProto
 Dimensions of a tensor. 
TensorShapeProto.Builder
 Dimensions of a tensor. 
TensorShapeProto.Dim
 One dimension of the tensor. 
TensorShapeProto.Dim.Builder
 One dimension of the tensor. 
TensorShapeProto.DimOrBuilder  
TensorShapeProtoOrBuilder  
TensorShapeProtos  
TensorSliceDataset  
TensorSliceDataset Creates a dataset that emits each dim-0 slice of `components` once. 
TensorSliceProto
 Can only be interpreted if you know the corresponding TensorShape. 
TensorSliceProto.Builder
 Can only be interpreted if you know the corresponding TensorShape. 
TensorSliceProto.Extent
 Extent of the slice in one dimension. 
TensorSliceProto.Extent.Builder
 Extent of the slice in one dimension. 
TensorSliceProto.Extent.HasLengthCase  
TensorSliceProto.ExtentOrBuilder  
TensorSliceProtoOrBuilder  
TensorSliceProtos  
TensorSpecProto
 A protobuf to represent tf.TensorSpec. 
TensorSpecProto.Builder
 A protobuf to represent tf.TensorSpec. 
TensorSpecProtoOrBuilder  
TensorStridedSliceUpdate<T extends TType> Assign `value` to the sliced l-value reference of `input`. 
TensorStridedSliceUpdate.Options Optional attributes for TensorStridedSliceUpdate  
TensorSummary Outputs a `Summary` protocol buffer with a tensor and per-plugin data. 
TensorType Annotation for all tensor types. 
TensorTypeInfo<T extends TType> Registered information about a tensor type. 
TensorTypeRegistry Repository of all registered tensor types. 
TestLogProtos  
TestResults
 The output of one benchmark / test run. 
TestResults.BenchmarkType
 The type of benchmark. 
TestResults.Builder
 The output of one benchmark / test run. 
TestResultsOrBuilder  
TextLineDataset  
TextLineDataset Creates a dataset that emits the lines of one or more text files. 
TextLineReader A Reader that outputs the lines of a file delimited by '\n'. 
TextLineReader.Options Optional attributes for TextLineReader  
TF_AllocatorAttributes  
TF_ApiDefMap  
TF_AttrMetadata  
TF_Buffer  
TF_Buffer.Data_deallocator_Pointer_long  
TF_DeprecatedSession  
TF_DeviceList  
TF_DimensionHandle  
TF_Function  
TF_FunctionOptions  
TF_Graph  
TF_ImportGraphDefOptions  
TF_ImportGraphDefResults  
TF_Input  
TF_KernelBuilder  
TF_Library  
TF_OpDefinitionBuilder  
TF_Operation  
TF_OperationDescription  
TF_OpKernelConstruction  
TF_OpKernelContext  
TF_Output  
TF_Server  
TF_Session  
TF_SessionOptions  
TF_ShapeHandle  
TF_ShapeInferenceContext  
TF_Status  
TF_StringView  
TF_Tensor  
TF_TString  
TF_TString_Large  
TF_TString_Offset  
TF_TString_Raw  
TF_TString_Small  
TF_TString_Union  
TF_TString_View  
TF_WhileParams  
TFE_Context  
TFE_ContextOptions  
TFE_Op  
TFE_TensorDebugInfo  
TFE_TensorHandle  
TFFailedPreconditionException  
TFInvalidArgumentException  
TFloat16 IEEE-754 half-precision 16-bit float tensor type. 
TFloat16Mapper Maps memory of DT_HALF tensors to a n-dimensional data space. 
TFloat32 IEEE-754 single-precision 32-bit float tensor type. 
TFloat32Mapper Maps memory of DT_FLOAT tensors to a n-dimensional data space. 
TFloat64 IEEE-754 double-precision 64-bit float tensor type. 
TFloat64Mapper Maps memory of DT_DOUBLE tensors to a n-dimensional data space. 
TFloating Common interface for all floating point tensors. 
TFOutOfRangeException  
TFPermissionDeniedException  
TfRecordDataset Creates a dataset that emits the records from one or more TFRecord files. 
TFRecordDataset  
TfRecordReader A Reader that outputs the records from a TensorFlow Records file. 
TfRecordReader.Options Optional attributes for TfRecordReader  
TFResourceExhaustedException  
TFUnauthenticatedException  
TFUnimplementedException  
ThreadPoolDataset Creates a dataset that uses a custom thread pool to compute `input_dataset`. 
ThreadPoolDataset Creates a dataset that uses a custom thread pool to compute `input_dataset`. 
ThreadPoolHandle Creates a dataset that uses a custom thread pool to compute `input_dataset`. 
ThreadPoolHandle Creates a dataset that uses a custom thread pool to compute `input_dataset`. 
ThreadPoolHandle.Options Optional attributes for ThreadPoolHandle  
ThreadPoolHandle.Options Optional attributes for ThreadPoolHandle  
ThreadPoolOptionProto Protobuf type tensorflow.ThreadPoolOptionProto  
ThreadPoolOptionProto.Builder Protobuf type tensorflow.ThreadPoolOptionProto  
ThreadPoolOptionProtoOrBuilder  
Tile<T extends TType> Constructs a tensor by tiling a given tensor. 
TileGrad<T extends TType> Returns the gradient of `Tile`. 
Timestamp Provides the time since epoch in seconds. 
TInt32 32-bit signed integer tensor type. 
TInt32Mapper Maps memory of DT_INT32 tensors to a n-dimensional data space. 
TInt64 64-bit signed integer tensor type. 
TInt64Mapper Maps memory of DT_INT64 tensors to a n-dimensional data space. 
TIntegral Common interface for all integral numeric tensors. 
TNumber Common interface for all numeric tensors. 
ToBool Converts a tensor to a scalar predicate. 
ToHashBucket Converts each string in the input Tensor to its hash mod by a number of buckets. 
ToHashBucketFast Converts each string in the input Tensor to its hash mod by a number of buckets. 
ToHashBucketStrong Converts each string in the input Tensor to its hash mod by a number of buckets. 
ToNumber<T extends TNumber> Converts each string in the input Tensor to the specified numeric type. 
TopK<T extends TNumber> Finds values and indices of the `k` largest elements for the last dimension. 
TopK.Options Optional attributes for TopK  
TopKUnique Returns the TopK unique values in the array in sorted order. 
TopKWithUnique Returns the TopK values in the array in sorted order. 
TPUCompilationResult Returns the result of a TPU compilation. 
TPUEmbeddingActivations An op enabling differentiation of TPU Embeddings. 
TPUReplicatedInput<T extends TType> Connects N inputs to an N-way replicated TPU computation. 
TPUReplicatedInput.Options Optional attributes for TPUReplicatedInput  
TPUReplicatedOutput<T extends TType> Connects N outputs from an N-way replicated TPU computation. 
TPUReplicateMetadata Metadata indicating how the TPU computation should be replicated. 
TPUReplicateMetadata.Options Optional attributes for TPUReplicateMetadata  
TrackableObjectGraph Protobuf type tensorflow.TrackableObjectGraph  
TrackableObjectGraph.Builder Protobuf type tensorflow.TrackableObjectGraph  
TrackableObjectGraph.TrackableObject Protobuf type tensorflow.TrackableObjectGraph.TrackableObject  
TrackableObjectGraph.TrackableObject.Builder Protobuf type tensorflow.TrackableObjectGraph.TrackableObject  
TrackableObjectGraph.TrackableObject.ObjectReference Protobuf type tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference  
TrackableObjectGraph.TrackableObject.ObjectReference.Builder Protobuf type tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference  
TrackableObjectGraph.TrackableObject.ObjectReferenceOrBuilder  
TrackableObjectGraph.TrackableObject.SerializedTensor Protobuf type tensorflow.TrackableObjectGraph.TrackableObject.SerializedTensor  
TrackableObjectGraph.TrackableObject.SerializedTensor.Builder Protobuf type tensorflow.TrackableObjectGraph.TrackableObject.SerializedTensor  
TrackableObjectGraph.TrackableObject.SerializedTensorOrBuilder  
TrackableObjectGraph.TrackableObject.SlotVariableReference Protobuf type tensorflow.TrackableObjectGraph.TrackableObject.SlotVariableReference  
TrackableObjectGraph.TrackableObject.SlotVariableReference.Builder Protobuf type tensorflow.TrackableObjectGraph.TrackableObject.SlotVariableReference  
TrackableObjectGraph.TrackableObject.SlotVariableReferenceOrBuilder  
TrackableObjectGraph.TrackableObjectOrBuilder  
TrackableObjectGraphOrBuilder  
TrackableObjectGraphProtos  
TransportOptions  
TransportOptions.RecvBufRespExtra
 Extra data needed on a non-RDMA RecvBufResponse. 
TransportOptions.RecvBufRespExtra.Builder
 Extra data needed on a non-RDMA RecvBufResponse. 
TransportOptions.RecvBufRespExtraOrBuilder  
Transpose<T extends TType> Shuffle dimensions of x according to a permutation. 
TriangularSolve<T extends TType> Solves systems of linear equations with upper or lower triangular matrices by backsubstitution. 
TriangularSolve.Options Optional attributes for TriangularSolve  
TridiagonalMatMul<T extends TType> Calculate product with tridiagonal matrix. 
TridiagonalSolve<T extends TType> Solves tridiagonal systems of equations. 
TridiagonalSolve.Options Optional attributes for TridiagonalSolve  
TruncateDiv<T extends TType> Returns x / y element-wise for integer types. 
TruncatedNormal<T extends TFloating> Initializer that generates a truncated normal distribution. 
TruncatedNormal<U extends TNumber> Outputs random values from a truncated normal distribution. 
TruncatedNormal.Options Optional attributes for TruncatedNormal  
TruncateMod<T extends TNumber> Returns element-wise remainder of division. 
TryRpc Perform batches of RPC requests. 
TryRpc.Options Optional attributes for TryRpc  
TString String type. 
TStringInitializer<T> Helper class for initializing a TString tensor. 
TStringMapper Maps memory of DT_STRING tensors to a n-dimensional data space. 
TType Common interface for all typed tensors. 
TUint8 8-bit unsigned integer tensor type. 
TUint8Mapper Maps memory of DT_UINT8 tensors to a n-dimensional data space. 
TupleValue
 Represents a Python tuple. 
TupleValue.Builder
 Represents a Python tuple. 
TupleValueOrBuilder  
TypeSpecProto
 Represents a tf.TypeSpec
 
Protobuf type tensorflow.TypeSpecProto  
TypeSpecProto.Builder
 Represents a tf.TypeSpec
 
Protobuf type tensorflow.TypeSpecProto  
TypeSpecProto.TypeSpecClass Protobuf enum tensorflow.TypeSpecProto.TypeSpecClass  
TypeSpecProtoOrBuilder  
TypesProtos  

U

Unbatch<T extends TType> Reverses the operation of Batch for a single output Tensor. 
Unbatch.Options Optional attributes for Unbatch  
UnbatchDataset A dataset that splits the elements of its input into multiple elements. 
UnbatchDataset A dataset that splits the elements of its input into multiple elements. 
UnbatchGrad<T extends TType> Gradient of Unbatch. 
UnbatchGrad.Options Optional attributes for UnbatchGrad  
UncompressElement Uncompresses a compressed dataset element. 
UnicodeDecode<T extends TNumber> Decodes each string in `input` into a sequence of Unicode code points. 
UnicodeDecode.Options Optional attributes for UnicodeDecode  
UnicodeDecodeWithOffsets<T extends TNumber> Decodes each string in `input` into a sequence of Unicode code points. 
UnicodeDecodeWithOffsets.Options Optional attributes for UnicodeDecodeWithOffsets  
UnicodeEncode Encode a tensor of ints into unicode strings. 
UnicodeEncode.Options Optional attributes for UnicodeEncode  
UnicodeScript Determine the script codes of a given tensor of Unicode integer code points. 
UnicodeTranscode Transcode the input text from a source encoding to a destination encoding. 
UnicodeTranscode.Options Optional attributes for UnicodeTranscode  
UniformCandidateSampler Generates labels for candidate sampling with a uniform distribution. 
UniformCandidateSampler.Options Optional attributes for UniformCandidateSampler  
Unique<T extends TType, V extends TNumber> Finds unique elements along an axis of a tensor. 
UniqueDataset Creates a dataset that contains the unique elements of `input_dataset`. 
UniqueDataset Creates a dataset that contains the unique elements of `input_dataset`. 
UniqueWithCounts<T extends TType, V extends TNumber> Finds unique elements along an axis of a tensor. 
UnitNorm Constrains the weights to have unit norm. 
UnravelIndex<T extends TNumber> Converts an array of flat indices into a tuple of coordinate arrays. 
UnsortedSegmentJoin Joins the elements of `inputs` based on `segment_ids`. 
UnsortedSegmentJoin.Options Optional attributes for UnsortedSegmentJoin  
UnsortedSegmentMax<T extends TNumber> Computes the maximum along segments of a tensor. 
UnsortedSegmentMin<T extends TNumber> Computes the minimum along segments of a tensor. 
UnsortedSegmentProd<T extends TType> Computes the product along segments of a tensor. 
UnsortedSegmentSum<T extends TType> Computes the sum along segments of a tensor. 
Unstack<T extends TType> Unpacks a given dimension of a rank-`R` tensor into `num` rank-`(R-1)` tensors. 
Unstack.Options Optional attributes for Unstack  
Unstage Op is similar to a lightweight Dequeue. 
Unstage.Options Optional attributes for Unstage  
UnwrapDatasetVariant  
Upper Converts all lowercase characters into their respective uppercase replacements. 
Upper.Options Optional attributes for Upper  
UpperBound<U extends TNumber> Applies upper_bound(sorted_search_values, values) along each row. 

V

Validator  
Validator  
ValuesDef
 Protocol buffer representing the values in ControlFlowContext. 
ValuesDef.Builder
 Protocol buffer representing the values in ControlFlowContext. 
ValuesDefOrBuilder  
VarHandleOp Creates a handle to a Variable resource. 
VarHandleOp.Options Optional attributes for VarHandleOp  
Variable<T extends TType> Holds state in the form of a tensor that persists across steps. 
Variable.Options Optional attributes for Variable  
VariableAggregation
 Indicates how a distributed variable will be aggregated. 
VariableDef
 Protocol buffer representing a Variable. 
VariableDef.Builder
 Protocol buffer representing a Variable. 
VariableDefOrBuilder  
VariableProtos  
VariableShape<T extends TNumber> Returns the shape of the variable pointed to by `resource`. 
VariableSynchronization
 Indicates when a distributed variable will be synced. 
VarianceScaling<T extends TFloating> Initializer capable of adapting its scale to the shape of weights tensors. 
VarianceScaling.Distribution The random distribution to use when initializing the values. 
VarianceScaling.Mode The mode to use for calculating the fan values. 
VariantTensorDataProto
 Protocol buffer representing the serialization format of DT_VARIANT tensors. 
VariantTensorDataProto.Builder
 Protocol buffer representing the serialization format of DT_VARIANT tensors. 
VariantTensorDataProtoOrBuilder  
VarIsInitializedOp Checks whether a resource handle-based variable has been initialized. 
VarLenFeatureProto Protobuf type tensorflow.VarLenFeatureProto  
VarLenFeatureProto.Builder Protobuf type tensorflow.VarLenFeatureProto  
VarLenFeatureProtoOrBuilder  
VerifierConfig
 The config for graph verifiers. 
VerifierConfig.Builder
 The config for graph verifiers. 
VerifierConfig.Toggle Protobuf enum tensorflow.VerifierConfig.Toggle  
VerifierConfigOrBuilder  
VerifierConfigProtos  
VersionDef
 Version information for a piece of serialized data
 There are different types of versions for each type of data
 (GraphDef, etc.), but they all have the same common shape
 described here. 
VersionDef.Builder
 Version information for a piece of serialized data
 There are different types of versions for each type of data
 (GraphDef, etc.), but they all have the same common shape
 described here. 
VersionDefOrBuilder  
VersionsProtos  

W

WatchdogConfig Protobuf type tensorflow.WatchdogConfig  
WatchdogConfig.Builder Protobuf type tensorflow.WatchdogConfig  
WatchdogConfigOrBuilder  
WeakPointerScope A minimalist pointer scope only keeping weak references to its elements. 
Where Returns locations of nonzero / true values in a tensor. 
WhileContextDef
 Protocol buffer representing a WhileContext object. 
WhileContextDef.Builder
 Protocol buffer representing a WhileContext object. 
WhileContextDefOrBuilder  
WholeFileReader A Reader that outputs the entire contents of a file as a value. 
WholeFileReader.Options Optional attributes for WholeFileReader  
WindowDataset Combines (nests of) input elements into a dataset of (nests of) windows. 
WorkerHealth
 Current health status of a worker. 
WorkerHeartbeat Worker heartbeat op. 
WorkerHeartbeatRequest Protobuf type tensorflow.WorkerHeartbeatRequest  
WorkerHeartbeatRequest.Builder Protobuf type tensorflow.WorkerHeartbeatRequest  
WorkerHeartbeatRequestOrBuilder  
WorkerHeartbeatResponse Protobuf type tensorflow.WorkerHeartbeatResponse  
WorkerHeartbeatResponse.Builder Protobuf type tensorflow.WorkerHeartbeatResponse  
WorkerHeartbeatResponseOrBuilder  
WorkerShutdownMode
 Indicates the behavior of the worker when an internal error or shutdown
 signal is received. 
WrapDatasetVariant  
WriteAudioSummary Writes an audio summary. 
WriteAudioSummary.Options Optional attributes for WriteAudioSummary  
WriteFile Writes contents to the file at input filename. 
WriteGraphSummary Writes a graph summary. 
WriteHistogramSummary Writes a histogram summary. 
WriteImageSummary Writes an image summary. 
WriteImageSummary.Options Optional attributes for WriteImageSummary  
WriteRawProtoSummary Writes a serialized proto summary. 
WriteScalarSummary Writes a scalar summary. 
WriteSummary Writes a tensor summary. 

X

Xdivy<T extends TType> Returns 0 if x == 0, and x / y otherwise, elementwise. 
XEvent
 An XEvent is a trace event, optionally annotated with XStats. 
XEvent.Builder
 An XEvent is a trace event, optionally annotated with XStats. 
XEvent.DataCase  
XEventMetadata
 Metadata for an XEvent, corresponds to an event type and is shared by
 all XEvents with the same metadata_id. 
XEventMetadata.Builder
 Metadata for an XEvent, corresponds to an event type and is shared by
 all XEvents with the same metadata_id. 
XEventMetadataOrBuilder  
XEventOrBuilder  
XlaRecvFromHost<T extends TType> An op to receive a tensor from the host. 
XlaSendToHost An op to send a tensor to the host. 
XlaSetBound Set a bound for the given input value as a hint to Xla compiler,

returns the same value. 

XlaSpmdFullToShardShape<T extends TType> An op used by XLA SPMD partitioner to switch from automatic partitioning to

manual partitioning. 

XlaSpmdShardToFullShape<T extends TType> An op used by XLA SPMD partitioner to switch from manual partitioning to

automatic partitioning. 

XLine
 An XLine is a timeline of trace events (XEvents). 
XLine.Builder
 An XLine is a timeline of trace events (XEvents). 
XLineOrBuilder  
Xlog1py<T extends TType> Returns 0 if x == 0, and x * log1p(y) otherwise, elementwise. 
Xlogy<T extends TType> Returns 0 if x == 0, and x * log(y) otherwise, elementwise. 
XPlane
 An XPlane is a container of parallel timelines (XLines), generated by a
 profiling source or by post-processing one or more XPlanes. 
XPlane.Builder
 An XPlane is a container of parallel timelines (XLines), generated by a
 profiling source or by post-processing one or more XPlanes. 
XPlaneOrBuilder  
XPlaneProtos  
XSpace
 A container of parallel XPlanes, generated by one or more profiling sources. 
XSpace.Builder
 A container of parallel XPlanes, generated by one or more profiling sources. 
XSpaceOrBuilder  
XStat
 An XStat is a named value associated with an XEvent, e.g., a performance
 counter value, a metric computed by a formula applied over nested XEvents
 and XStats. 
XStat.Builder
 An XStat is a named value associated with an XEvent, e.g., a performance
 counter value, a metric computed by a formula applied over nested XEvents
 and XStats. 
XStat.ValueCase  
XStatMetadata
 Metadata for an XStat, corresponds to a stat type and is shared by all
 XStats with the same metadata_id. 
XStatMetadata.Builder
 Metadata for an XStat, corresponds to a stat type and is shared by all
 XStats with the same metadata_id. 
XStatMetadataOrBuilder  
XStatOrBuilder  

Z

Zeros<T extends TType> Creates an Initializer that sets all values to zero. 
Zeros<T extends TType> An operator creating a constant initialized with zeros of the shape given by `dims`. 
ZerosLike<T extends TType> Returns a tensor of zeros with the same shape and type as x. 
Zeta<T extends TNumber> Compute the Hurwitz zeta function \\(\zeta(x, q)\\). 
ZipDataset Creates a dataset that zips together `input_datasets`.