A
Abort | Raise a exception to abort the process when called. |
Abort.Options | Optional attributes for Abort
|
Abs<T extends TNumber> | Computes the absolute value of a tensor. |
AbstractDataBuffer<T> | |
AbstractDataBufferWindow<B extends DataBuffer<?>> | |
AbstractDenseNdArray<T, U extends NdArray<T>> | |
AbstractNdArray<T, U extends NdArray<T>> | |
AbstractTF_Buffer | |
AbstractTF_Graph | |
AbstractTF_ImportGraphDefOptions | |
AbstractTF_Session | |
AbstractTF_SessionOptions | |
AbstractTF_Status | |
AbstractTF_Tensor | |
AbstractTFE_Context | |
AbstractTFE_ContextOptions | |
AbstractTFE_Op | |
AbstractTFE_TensorHandle | |
AccumulateN<T extends TType> | Returns the element-wise sum of a list of tensors. |
AccumulatorApplyGradient | Applies a gradient to a given accumulator. |
AccumulatorNumAccumulated | Returns the number of gradients aggregated in the given accumulators. |
AccumulatorSetGlobalStep | Updates the accumulator with a new value for global_step. |
AccumulatorTakeGradient<T extends TType> | Extracts the average gradient in the given ConditionalAccumulator. |
Acos<T extends TType> | Computes acos of x element-wise. |
Acosh<T extends TType> | Computes inverse hyperbolic cosine of x element-wise. |
Activation<T extends TNumber> | Abstract base class for Activations
Note: The |
AdaDelta | Optimizer that implements the Adadelta algorithm. |
AdaGrad | Optimizer that implements the Adagrad algorithm. |
AdaGradDA | Optimizer that implements the Adagrad Dual-Averaging algorithm. |
Adam | Optimizer that implements the Adam algorithm. |
Adamax | Optimizer that implements the Adamax algorithm. |
Add<T extends TType> | Returns x + y element-wise. |
AddManySparseToTensorsMap | Add an `N`-minibatch `SparseTensor` to a `SparseTensorsMap`, return `N` handles. |
AddManySparseToTensorsMap.Options | Optional attributes for AddManySparseToTensorsMap
|
AddN<T extends TType> | Add all input tensors element wise. |
AddSparseToTensorsMap | Add a `SparseTensor` to a `SparseTensorsMap` return its handle. |
AddSparseToTensorsMap.Options | Optional attributes for AddSparseToTensorsMap
|
AdjustContrast<T extends TNumber> | Adjust the contrast of one or more images. |
AdjustHue<T extends TNumber> | Adjust the hue of one or more images. |
AdjustSaturation<T extends TNumber> | Adjust the saturation of one or more images. |
All | Computes the "logical and" of elements across dimensions of a tensor. |
All.Options | Optional attributes for All
|
AllCandidateSampler | Generates labels for candidate sampling with a learned unigram distribution. |
AllCandidateSampler.Options | Optional attributes for AllCandidateSampler
|
AllocationDescription | Protobuf type tensorflow.AllocationDescription
|
AllocationDescription.Builder | Protobuf type tensorflow.AllocationDescription
|
AllocationDescriptionOrBuilder | |
AllocationDescriptionProtos | |
AllocationRecord | An allocation/de-allocation operation performed by the allocator. |
AllocationRecord.Builder | An allocation/de-allocation operation performed by the allocator. |
AllocationRecordOrBuilder | |
AllocatorMemoryUsed | Protobuf type tensorflow.AllocatorMemoryUsed
|
AllocatorMemoryUsed.Builder | Protobuf type tensorflow.AllocatorMemoryUsed
|
AllocatorMemoryUsedOrBuilder | |
AllReduce<T extends TNumber> | Mutually reduces multiple tensors of identical type and shape. |
AllReduce.Options | Optional attributes for AllReduce
|
AllToAll<T extends TType> | An Op to exchange data across TPU replicas. |
Angle<U extends TNumber> | Returns the argument of a complex number. |
AnonymousIterator | A container for an iterator resource. |
AnonymousMemoryCache | |
AnonymousMultiDeviceIterator | A container for a multi device iterator resource. |
AnonymousRandomSeedGenerator | |
AnonymousSeedGenerator | |
Any | Computes the "logical or" of elements across dimensions of a tensor. |
Any.Options | Optional attributes for Any
|
ApiDef | Used to specify and override the default API & behavior in the generated code for client languages, from what you would get from the OpDef alone. |
ApiDef.Arg | Protobuf type tensorflow.ApiDef.Arg
|
ApiDef.Arg.Builder | Protobuf type tensorflow.ApiDef.Arg
|
ApiDef.ArgOrBuilder | |
ApiDef.Attr | Description of the graph-construction-time configuration of this Op. |
ApiDef.Attr.Builder | Description of the graph-construction-time configuration of this Op. |
ApiDef.AttrOrBuilder | |
ApiDef.Builder | Used to specify and override the default API & behavior in the generated code for client languages, from what you would get from the OpDef alone. |
ApiDef.Endpoint | If you specify any endpoint, this will replace all of the inherited endpoints. |
ApiDef.Endpoint.Builder | If you specify any endpoint, this will replace all of the inherited endpoints. |
ApiDef.EndpointOrBuilder | |
ApiDef.Visibility | Protobuf enum tensorflow.ApiDef.Visibility
|
ApiDefOrBuilder | |
ApiDefProtos | |
ApiDefs | Protobuf type tensorflow.ApiDefs
|
ApiDefs.Builder | Protobuf type tensorflow.ApiDefs
|
ApiDefsOrBuilder | |
ApplyAdadelta<T extends TType> | Update '*var' according to the adadelta scheme. |
ApplyAdadelta.Options | Optional attributes for ApplyAdadelta
|
ApplyAdagrad<T extends TType> | Update '*var' according to the adagrad scheme. |
ApplyAdagrad.Options | Optional attributes for ApplyAdagrad
|
ApplyAdagradDa<T extends TType> | Update '*var' according to the proximal adagrad scheme. |
ApplyAdagradDa.Options | Optional attributes for ApplyAdagradDa
|
ApplyAdagradV2<T extends TType> | Update '*var' according to the adagrad scheme. |
ApplyAdagradV2.Options | Optional attributes for ApplyAdagradV2
|
ApplyAdam<T extends TType> | Update '*var' according to the Adam algorithm. |
ApplyAdam.Options | Optional attributes for ApplyAdam
|
ApplyAdaMax<T extends TType> | Update '*var' according to the AdaMax algorithm. |
ApplyAdaMax.Options | Optional attributes for ApplyAdaMax
|
ApplyAddSign<T extends TType> | Update '*var' according to the AddSign update. |
ApplyAddSign.Options | Optional attributes for ApplyAddSign
|
ApplyCenteredRmsProp<T extends TType> | Update '*var' according to the centered RMSProp algorithm. |
ApplyCenteredRmsProp.Options | Optional attributes for ApplyCenteredRmsProp
|
ApplyFtrl<T extends TType> | Update '*var' according to the Ftrl-proximal scheme. |
ApplyFtrl.Options | Optional attributes for ApplyFtrl
|
ApplyGradientDescent<T extends TType> | Update '*var' by subtracting 'alpha' * 'delta' from it. |
ApplyGradientDescent.Options | Optional attributes for ApplyGradientDescent
|
ApplyMomentum<T extends TType> | Update '*var' according to the momentum scheme. |
ApplyMomentum.Options | Optional attributes for ApplyMomentum
|
ApplyPowerSign<T extends TType> | Update '*var' according to the AddSign update. |
ApplyPowerSign.Options | Optional attributes for ApplyPowerSign
|
ApplyProximalAdagrad<T extends TType> | Update '*var' and '*accum' according to FOBOS with Adagrad learning rate. |
ApplyProximalAdagrad.Options | Optional attributes for ApplyProximalAdagrad
|
ApplyProximalGradientDescent<T extends TType> | Update '*var' as FOBOS algorithm with fixed learning rate. |
ApplyProximalGradientDescent.Options | Optional attributes for ApplyProximalGradientDescent
|
ApplyRmsProp<T extends TType> | Update '*var' according to the RMSProp algorithm. |
ApplyRmsProp.Options | Optional attributes for ApplyRmsProp
|
ApproximateEqual | Returns the truth value of abs(x-y) < tolerance element-wise. |
ApproximateEqual.Options | Optional attributes for ApproximateEqual
|
ArgMax<V extends TNumber> | Returns the index with the largest value across dimensions of a tensor. |
ArgMin<V extends TNumber> | Returns the index with the smallest value across dimensions of a tensor. |
Asin<T extends TType> | Computes the trignometric inverse sine of x element-wise. |
Asinh<T extends TType> | Computes inverse hyperbolic sine of x element-wise. |
AssertCardinalityDataset | |
AssertNextDataset | A transformation that asserts which transformations happen next. |
AssertNextDataset | |
AssertThat | Asserts that the given condition is true. |
AssertThat.Options | Optional attributes for AssertThat
|
AssetFileDef | An asset file def for a single file or a set of sharded files with the same name. |
AssetFileDef.Builder | An asset file def for a single file or a set of sharded files with the same name. |
AssetFileDefOrBuilder | |
Assign<T extends TType> | Update 'ref' by assigning 'value' to it. |
Assign.Options | Optional attributes for Assign
|
AssignAdd<T extends TType> | Update 'ref' by adding 'value' to it. |
AssignAdd.Options | Optional attributes for AssignAdd
|
AssignAddVariableOp | Adds a value to the current value of a variable. |
AssignSub<T extends TType> | Update 'ref' by subtracting 'value' from it. |
AssignSub.Options | Optional attributes for AssignSub
|
AssignSubVariableOp | Subtracts a value from the current value of a variable. |
AssignVariableOp | Assigns a new value to a variable. |
AsString | Converts each entry in the given tensor to strings. |
AsString.Options | Optional attributes for AsString
|
Atan<T extends TType> | Computes the trignometric inverse tangent of x element-wise. |
Atan2<T extends TNumber> | Computes arctangent of `y/x` element-wise, respecting signs of the arguments. |
Atanh<T extends TType> | Computes inverse hyperbolic tangent of x element-wise. |
AttrValue | Protocol buffer representing the value for an attr used to configure an Op. |
AttrValue.Builder | Protocol buffer representing the value for an attr used to configure an Op. |
AttrValue.ListValue | LINT.IfChange tensorflow.AttrValue.ListValue
|
AttrValue.ListValue.Builder | LINT.IfChange tensorflow.AttrValue.ListValue
|
AttrValue.ListValueOrBuilder | |
AttrValue.ValueCase | |
AttrValueOrBuilder | |
AttrValueProtos | |
AudioSpectrogram | Produces a visualization of audio data over time. |
AudioSpectrogram.Options | Optional attributes for AudioSpectrogram
|
AudioSummary | Outputs a `Summary` protocol buffer with audio. |
AudioSummary.Options | Optional attributes for AudioSummary
|
AutoParallelOptions | Protobuf type tensorflow.AutoParallelOptions
|
AutoParallelOptions.Builder | Protobuf type tensorflow.AutoParallelOptions
|
AutoParallelOptionsOrBuilder | |
AutoShardDataset | Creates a dataset that shards the input dataset. |
AutoShardDataset | Creates a dataset that shards the input dataset. |
AutoShardDataset.Options | Optional attributes for AutoShardDataset
|
AutoShardDataset.Options | Optional attributes for AutoShardDataset
|
AvailableDeviceInfo | Matches DeviceAttributes tensorflow.AvailableDeviceInfo
|
AvailableDeviceInfo.Builder | Matches DeviceAttributes tensorflow.AvailableDeviceInfo
|
AvailableDeviceInfoOrBuilder | |
AvgPool<T extends TNumber> | Performs average pooling on the input. |
AvgPool.Options | Optional attributes for AvgPool
|
AvgPool3d<T extends TNumber> | Performs 3D average pooling on the input. |
AvgPool3d.Options | Optional attributes for AvgPool3d
|
AvgPool3dGrad<T extends TNumber> | Computes gradients of average pooling function. |
AvgPool3dGrad.Options | Optional attributes for AvgPool3dGrad
|
AvgPoolGrad<T extends TNumber> | Computes gradients of the average pooling function. |
AvgPoolGrad.Options | Optional attributes for AvgPoolGrad
|
B
BandedTriangularSolve<T extends TType> | |
BandedTriangularSolve.Options | Optional attributes for BandedTriangularSolve
|
BandPart<T extends TType> | Copy a tensor setting everything outside a central band in each innermost matrix to zero. |
Barrier | Defines a barrier that persists across different graph executions. |
Barrier.Options | Optional attributes for Barrier
|
BarrierClose | Closes the given barrier. |
BarrierClose.Options | Optional attributes for BarrierClose
|
BarrierIncompleteSize | Computes the number of incomplete elements in the given barrier. |
BarrierInsertMany | For each key, assigns the respective value to the specified component. |
BarrierReadySize | Computes the number of complete elements in the given barrier. |
BarrierTakeMany | Takes the given number of completed elements from a barrier. |
BarrierTakeMany.Options | Optional attributes for BarrierTakeMany
|
BaseInitializer<T extends TType> | Abstract base class for all Initializers |
Batch | Batches all input tensors nondeterministically. |
Batch.Options | Optional attributes for Batch
|
BatchCholesky<T extends TNumber> | |
BatchCholeskyGrad<T extends TNumber> | |
BatchDataset | |
BatchDataset | Creates a dataset that batches `batch_size` elements from `input_dataset`. |
BatchDataset.Options | Optional attributes for BatchDataset
|
BatchFft | |
BatchFft2d | |
BatchFft3d | |
BatchIfft | |
BatchIfft2d | |
BatchIfft3d | |
BatchMatMul<T extends TType> | Multiplies slices of two tensors in batches. |
BatchMatMul.Options | Optional attributes for BatchMatMul
|
BatchMatrixBandPart<T extends TType> | |
BatchMatrixDeterminant<T extends TType> | |
BatchMatrixDiag<T extends TType> | |
BatchMatrixDiagPart<T extends TType> | |
BatchMatrixInverse<T extends TNumber> | |
BatchMatrixInverse.Options | Optional attributes for BatchMatrixInverse
|
BatchMatrixSetDiag<T extends TType> | |
BatchMatrixSolve<T extends TNumber> | |
BatchMatrixSolve.Options | Optional attributes for BatchMatrixSolve
|
BatchMatrixSolveLs<T extends TNumber> | |
BatchMatrixSolveLs.Options | Optional attributes for BatchMatrixSolveLs
|
BatchMatrixTriangularSolve<T extends TNumber> | |
BatchMatrixTriangularSolve.Options | Optional attributes for BatchMatrixTriangularSolve
|
BatchNormWithGlobalNormalization<T extends TType> | Batch normalization. |
BatchNormWithGlobalNormalizationGrad<T extends TType> | Gradients for batch normalization. |
BatchSelfAdjointEig<T extends TNumber> | |
BatchSelfAdjointEig.Options | Optional attributes for BatchSelfAdjointEig
|
BatchSvd<T extends TType> | |
BatchSvd.Options | Optional attributes for BatchSvd
|
BatchToSpace<T extends TType> | BatchToSpace for 4-D tensors of type T. |
BatchToSpaceNd<T extends TType> | BatchToSpace for N-D tensors of type T. |
BenchmarkEntries | Protobuf type tensorflow.BenchmarkEntries
|
BenchmarkEntries.Builder | Protobuf type tensorflow.BenchmarkEntries
|
BenchmarkEntriesOrBuilder | |
BenchmarkEntry | Each unit test or benchmark in a test or benchmark run provides some set of information. |
BenchmarkEntry.Builder | Each unit test or benchmark in a test or benchmark run provides some set of information. |
BenchmarkEntryOrBuilder | |
BesselI0<T extends TNumber> | |
BesselI0e<T extends TNumber> | |
BesselI1<T extends TNumber> | |
BesselI1e<T extends TNumber> | |
BesselJ0<T extends TNumber> | |
BesselJ1<T extends TNumber> | |
BesselK0<T extends TNumber> | |
BesselK0e<T extends TNumber> | |
BesselK1<T extends TNumber> | |
BesselK1e<T extends TNumber> | |
BesselY0<T extends TNumber> | |
BesselY1<T extends TNumber> | |
Betainc<T extends TNumber> | Compute the regularized incomplete beta integral \\(I_x(a, b)\\). |
BfcMemoryMapProtos | |
Bfloat16Layout | Data layout that converts 32-bit floats from/to 16-bit, truncating their mantissa to 7 bits but preserving the 8-bit exponent with the same bias. |
BiasAdd<T extends TType> | Adds `bias` to `value`. |
BiasAdd.Options | Optional attributes for BiasAdd
|
BiasAddGrad<T extends TType> | The backward operation for "BiasAdd" on the "bias" tensor. |
BiasAddGrad.Options | Optional attributes for BiasAddGrad
|
BinaryCrossentropy | Computes the cross-entropy loss between true labels and predicted labels. |
BinaryCrossentropy<T extends TNumber> | A Metric that computes the binary cross-entropy loss between true labels and predicted labels. |
Bincount<T extends TNumber> | Counts the number of occurrences of each value in an integer array. |
BinSummary | Protobuf type tensorflow.BinSummary
|
BinSummary.Builder | Protobuf type tensorflow.BinSummary
|
BinSummaryOrBuilder | |
Bitcast<U extends TType> | Bitcasts a tensor from one type to another without copying data. |
BitwiseAnd<T extends TNumber> | Elementwise computes the bitwise AND of `x` and `y`. |
BitwiseOr<T extends TNumber> | Elementwise computes the bitwise OR of `x` and `y`. |
BitwiseXor<T extends TNumber> | Elementwise computes the bitwise XOR of `x` and `y`. |
BlockLSTM<T extends TNumber> | Computes the LSTM cell forward propagation for all the time steps. |
BlockLSTM.Options | Optional attributes for BlockLSTM
|
BlockLSTMGrad<T extends TNumber> | Computes the LSTM cell backward propagation for the entire time sequence. |
BooleanDataBuffer | A DataBuffer of booleans. |
BooleanDataLayout<S extends DataBuffer<?>> | A DataLayout that converts data stored in a buffer to booleans. |
BooleanDenseNdArray | |
BooleanMask | |
BooleanMask.Options | Optional attributes for BooleanMask
|
BooleanMaskUpdate | |
BooleanMaskUpdate.Options | Optional attributes for BooleanMaskUpdate
|
BooleanNdArray | An NdArray of booleans. |
BoolLayout | Data layout that converts booleans from/to bytes. |
BoostedTreesAggregateStats | Aggregates the summary of accumulated stats for the batch. |
BoostedTreesBucketize | Bucketize each feature based on bucket boundaries. |
BoostedTreesCalculateBestFeatureSplit | Calculates gains for each feature and returns the best possible split information for the feature. |
BoostedTreesCalculateBestFeatureSplit.Options | Optional attributes for BoostedTreesCalculateBestFeatureSplit
|
BoostedTreesCalculateBestFeatureSplitV2 | Calculates gains for each feature and returns the best possible split information for each node. |
BoostedTreesCalculateBestGainsPerFeature | Calculates gains for each feature and returns the best possible split information for the feature. |
BoostedTreesCenterBias | Calculates the prior from the training data (the bias) and fills in the first node with the logits' prior. |
BoostedTreesCreateEnsemble | Creates a tree ensemble model and returns a handle to it. |
BoostedTreesCreateQuantileStreamResource | Create the Resource for Quantile Streams. |
BoostedTreesCreateQuantileStreamResource.Options | Optional attributes for BoostedTreesCreateQuantileStreamResource
|
BoostedTreesDeserializeEnsemble | Deserializes a serialized tree ensemble config and replaces current tree
ensemble. |
BoostedTreesEnsembleResourceHandleOp | Creates a handle to a BoostedTreesEnsembleResource |
BoostedTreesEnsembleResourceHandleOp.Options | Optional attributes for BoostedTreesEnsembleResourceHandleOp
|
BoostedTreesExampleDebugOutputs | Debugging/model interpretability outputs for each example. |
BoostedTreesFlushQuantileSummaries | Flush the quantile summaries from each quantile stream resource. |
BoostedTreesGetEnsembleStates | Retrieves the tree ensemble resource stamp token, number of trees and growing statistics. |
BoostedTreesMakeQuantileSummaries | Makes the summary of quantiles for the batch. |
BoostedTreesMakeStatsSummary | Makes the summary of accumulated stats for the batch. |
BoostedTreesPredict | Runs multiple additive regression ensemble predictors on input instances and
computes the logits. |
BoostedTreesQuantileStreamResourceAddSummaries | Add the quantile summaries to each quantile stream resource. |
BoostedTreesQuantileStreamResourceDeserialize | Deserialize bucket boundaries and ready flag into current QuantileAccumulator. |
BoostedTreesQuantileStreamResourceFlush | Flush the summaries for a quantile stream resource. |
BoostedTreesQuantileStreamResourceFlush.Options | Optional attributes for BoostedTreesQuantileStreamResourceFlush
|
BoostedTreesQuantileStreamResourceGetBucketBoundaries | Generate the bucket boundaries for each feature based on accumulated summaries. |
BoostedTreesQuantileStreamResourceHandleOp | Creates a handle to a BoostedTreesQuantileStreamResource. |
BoostedTreesQuantileStreamResourceHandleOp.Options | Optional attributes for BoostedTreesQuantileStreamResourceHandleOp
|
BoostedTreesSerializeEnsemble | Serializes the tree ensemble to a proto. |
BoostedTreesSparseAggregateStats | Aggregates the summary of accumulated stats for the batch. |
BoostedTreesSparseCalculateBestFeatureSplit | Calculates gains for each feature and returns the best possible split information for the feature. |
BoostedTreesSparseCalculateBestFeatureSplit.Options | Optional attributes for BoostedTreesSparseCalculateBestFeatureSplit
|
BoostedTreesTrainingPredict | Runs multiple additive regression ensemble predictors on input instances and
computes the update to cached logits. |
BoostedTreesUpdateEnsemble | Updates the tree ensemble by either adding a layer to the last tree being grown
or by starting a new tree. |
BoostedTreesUpdateEnsembleV2 | Updates the tree ensemble by adding a layer to the last tree being grown
or by starting a new tree. |
BoostedTreesUpdateEnsembleV2.Options | Optional attributes for BoostedTreesUpdateEnsembleV2
|
BoundedTensorSpecProto | A protobuf to represent tf.BoundedTensorSpec. |
BoundedTensorSpecProto.Builder | A protobuf to represent tf.BoundedTensorSpec. |
BoundedTensorSpecProtoOrBuilder | |
BroadcastDynamicShape<T extends TNumber> | Return the shape of s0 op s1 with broadcast. |
BroadcastGradientArgs<T extends TNumber> | Return the reduction indices for computing gradients of s0 op s1 with broadcast. |
BroadcastHelper<T extends TType> | Helper operator for performing XLA-style broadcasts
Broadcasts `lhs` and `rhs` to the same rank, by adding size 1 dimensions to whichever of `lhs` and `rhs` has the lower rank, using XLA's broadcasting rules for binary operators. |
BroadcastRecv<T extends TType> | Receives a tensor value broadcast from another device. |
BroadcastRecv.Options | Optional attributes for BroadcastRecv
|
BroadcastSend<T extends TType> | Broadcasts a tensor value to one or more other devices. |
BroadcastSend.Options | Optional attributes for BroadcastSend
|
BroadcastTo<T extends TType> | Broadcast an array for a compatible shape. |
Bucketize | Bucketizes 'input' based on 'boundaries'. |
BuildConfiguration | Protobuf type tensorflow.BuildConfiguration
|
BuildConfiguration.Builder | Protobuf type tensorflow.BuildConfiguration
|
BuildConfigurationOrBuilder | |
BundleEntryProto | Describes the metadata related to a checkpointed tensor. |
BundleEntryProto.Builder | Describes the metadata related to a checkpointed tensor. |
BundleEntryProtoOrBuilder | |
BundleHeaderProto | Special header that is associated with a bundle. |
BundleHeaderProto.Builder | Special header that is associated with a bundle. |
BundleHeaderProto.Endianness | An enum indicating the endianness of the platform that produced this bundle. |
BundleHeaderProtoOrBuilder | |
ByteDataBuffer | A DataBuffer of bytes. |
ByteDataLayout<S extends DataBuffer<?>> | A DataLayout that converts data stored in a buffer to bytes. |
ByteDenseNdArray | |
ByteNdArray | An NdArray of bytes. |
ByteSequenceProvider<T> | Produces sequence of bytes to be stored in a ByteSequenceTensorBuffer . |
ByteSequenceTensorBuffer | Buffer for storing string tensor data. |
BytesList | Containers to hold repeated fundamental values. |
BytesList.Builder | Containers to hold repeated fundamental values. |
BytesListOrBuilder | |
BytesProducedStatsDataset | Records the bytes size of each element of `input_dataset` in a StatsAggregator. |
BytesProducedStatsDataset | Records the bytes size of each element of `input_dataset` in a StatsAggregator. |
C
CacheDataset | Creates a dataset that caches elements from `input_dataset`. |
CacheDatasetV2 | |
CallableOptions | Defines a subgraph in another `GraphDef` as a set of feed points and nodes to be fetched or executed. |
CallableOptions.Builder | Defines a subgraph in another `GraphDef` as a set of feed points and nodes to be fetched or executed. |
CallableOptionsOrBuilder | |
Cast<U extends TType> | Cast x of type SrcT to y of DstT. |
Cast.Options | Optional attributes for Cast
|
CastHelper | A helper class for casting an Operand |
CategoricalCrossentropy | Computes the crossentropy loss between the labels and predictions. |
CategoricalCrossentropy<T extends TNumber> | A Metric that computes the categorical cross-entropy loss between true labels and predicted labels. |
CategoricalHinge | Computes the categorical hinge loss between labels and predictions. |
CategoricalHinge<T extends TNumber> | A Metric that computes the categorical hinge loss metric between labels and predictions. |
Ceil<T extends TNumber> | Returns element-wise smallest integer not less than x. |
CheckNumerics<T extends TNumber> | Checks a tensor for NaN, -Inf and +Inf values. |
Cholesky<T extends TType> | Computes the Cholesky decomposition of one or more square matrices. |
CholeskyGrad<T extends TNumber> | Computes the reverse mode backpropagated gradient of the Cholesky algorithm. |
ChooseFastestDataset | |
ChooseFastestDataset | |
ClipByValue<T extends TType> | Clips tensor values to a specified min and max. |
CloseSummaryWriter | |
ClusterDef | Defines a TensorFlow cluster as a set of jobs. |
ClusterDef.Builder | Defines a TensorFlow cluster as a set of jobs. |
ClusterDefOrBuilder | |
ClusterDeviceFilters | Defines the device filters for jobs in a cluster. |
ClusterDeviceFilters.Builder | Defines the device filters for jobs in a cluster. |
ClusterDeviceFiltersOrBuilder | |
ClusterOutput<T extends TType> | Operator that connects the output of an XLA computation to other consumer graph nodes. |
ClusterProtos | |
Code | The canonical error codes for TensorFlow APIs. |
CodeLocation | Code location information: A stack trace with host-name information. |
CodeLocation.Builder | Code location information: A stack trace with host-name information. |
CodeLocationOrBuilder | |
CollectionDef | CollectionDef should cover most collections. |
CollectionDef.AnyList | AnyList is used for collecting Any protos. |
CollectionDef.AnyList.Builder | AnyList is used for collecting Any protos. |
CollectionDef.AnyListOrBuilder | |
CollectionDef.Builder | CollectionDef should cover most collections. |
CollectionDef.BytesList | BytesList is used for collecting strings and serialized protobufs. |
CollectionDef.BytesList.Builder | BytesList is used for collecting strings and serialized protobufs. |
CollectionDef.BytesListOrBuilder | |
CollectionDef.FloatList | FloatList is used for collecting float values. |
CollectionDef.FloatList.Builder | FloatList is used for collecting float values. |
CollectionDef.FloatListOrBuilder | |
CollectionDef.Int64List | Int64List is used for collecting int, int64 and long values. |
CollectionDef.Int64List.Builder | Int64List is used for collecting int, int64 and long values. |
CollectionDef.Int64ListOrBuilder | |
CollectionDef.KindCase | |
CollectionDef.NodeList | NodeList is used for collecting nodes in graph. |
CollectionDef.NodeList.Builder | NodeList is used for collecting nodes in graph. |
CollectionDef.NodeListOrBuilder | |
CollectionDefOrBuilder | |
CollectiveGather<T extends TNumber> | Mutually accumulates multiple tensors of identical type and shape. |
CollectiveGather.Options | Optional attributes for CollectiveGather
|
CollectivePermute<T extends TType> | An Op to permute tensors across replicated TPU instances. |
CombinedNonMaxSuppression | Greedily selects a subset of bounding boxes in descending order of score,
This operation performs non_max_suppression on the inputs per batch, across all classes. |
CombinedNonMaxSuppression.Options | Optional attributes for CombinedNonMaxSuppression
|
CommitId | Protobuf type tensorflow.CommitId
|
CommitId.Builder | Protobuf type tensorflow.CommitId
|
CommitId.KindCase | |
CommitIdOrBuilder | |
CompareAndBitpack | Compare values of `input` to `threshold` and pack resulting bits into a `uint8`. |
CompilationResult | Returns the result of a TPU compilation. |
CompileSucceededAssert | Asserts that compilation succeeded. |
Complex<U extends TType> | Converts two real numbers to a complex number. |
ComplexAbs<U extends TNumber> | Computes the complex absolute value of a tensor. |
CompressElement | Compresses a dataset element. |
Compute_func_Pointer_TF_OpKernelContext | |
ComputeAccidentalHits | Computes the ids of the positions in sampled_candidates that match true_labels. |
ComputeAccidentalHits.Options | Optional attributes for ComputeAccidentalHits
|
ComputeBatchSize | Computes the static batch size of a dataset sans partial batches. |
Concat<T extends TType> | Concatenates tensors along one dimension. |
ConcatenateDataset | Creates a dataset that concatenates `input_dataset` with `another_dataset`. |
ConcreteFunction | A graph that can be invoked as a single function, with an input and output signature. |
CondContextDef | Protocol buffer representing a CondContext object. |
CondContextDef.Builder | Protocol buffer representing a CondContext object. |
CondContextDefOrBuilder | |
ConditionalAccumulator | A conditional accumulator for aggregating gradients. |
ConditionalAccumulator.Options | Optional attributes for ConditionalAccumulator
|
ConfigProto | Session configuration parameters. |
ConfigProto.Builder | Session configuration parameters. |
ConfigProto.Experimental | Everything inside Experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat. |
ConfigProto.Experimental.Builder | Everything inside Experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat. |
ConfigProto.Experimental.MlirBridgeRollout | An enum that describes the state of the MLIR bridge rollout. |
ConfigProto.ExperimentalOrBuilder | |
ConfigProtoOrBuilder | |
ConfigProtos | |
ConfigureDistributedTPU | Sets up the centralized structures for a distributed TPU system. |
ConfigureDistributedTPU.Options | Optional attributes for ConfigureDistributedTPU
|
ConfigureTPUEmbedding | Sets up TPUEmbedding in a distributed TPU system. |
Conj<T extends TType> | Returns the complex conjugate of a complex number. |
ConjugateTranspose<T extends TType> | Shuffle dimensions of x according to a permutation and conjugate the result. |
Constant<T extends TType> | Initializer that generates tensors with a constant value. |
Constant<T extends TType> | An operator producing a constant value. |
Constraint | Base class for Constraints. |
ConsumeMutexLock | This op consumes a lock created by `MutexLock`. |
ControlFlowContextDef | Container for any kind of control flow context. |
ControlFlowContextDef.Builder | Container for any kind of control flow context. |
ControlFlowContextDef.CtxtCase | |
ControlFlowContextDefOrBuilder | |
ControlFlowProtos | |
ControlTrigger | Does nothing. |
Conv<T extends TType> | Wraps the XLA ConvGeneralDilated operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#conv_convolution . |
Conv2d<T extends TNumber> | Computes a 2-D convolution given 4-D `input` and `filter` tensors. |
Conv2d.Options | Optional attributes for Conv2d
|
Conv2dBackpropFilter<T extends TNumber> | Computes the gradients of convolution with respect to the filter. |
Conv2dBackpropFilter.Options | Optional attributes for Conv2dBackpropFilter
|
Conv2dBackpropInput<T extends TNumber> | Computes the gradients of convolution with respect to the input. |
Conv2dBackpropInput.Options | Optional attributes for Conv2dBackpropInput
|
Conv3d<T extends TNumber> | Computes a 3-D convolution given 5-D `input` and `filter` tensors. |
Conv3d.Options | Optional attributes for Conv3d
|
Conv3dBackpropFilter<T extends TNumber> | Computes the gradients of 3-D convolution with respect to the filter. |
Conv3dBackpropFilter.Options | Optional attributes for Conv3dBackpropFilter
|
Conv3dBackpropInput<U extends TNumber> | Computes the gradients of 3-D convolution with respect to the input. |
Conv3dBackpropInput.Options | Optional attributes for Conv3dBackpropInput
|
Copy<T extends TType> | Copy a tensor from CPU-to-CPU or GPU-to-GPU. |
Copy.Options | Optional attributes for Copy
|
CopyHost<T extends TType> | Copy a tensor to host. |
CopyHost.Options | Optional attributes for CopyHost
|
Cos<T extends TType> | Computes cos of x element-wise. |
Cosh<T extends TType> | Computes hyperbolic cosine of x element-wise. |
CosineSimilarity | Computes the cosine similarity between labels and predictions. |
CosineSimilarity<T extends TNumber> | A metric that computes the cosine similarity metric between labels and predictions. |
CostGraphDef | Protobuf type tensorflow.CostGraphDef
|
CostGraphDef.AggregatedCost | Total cost of this graph, typically used for balancing decisions. |
CostGraphDef.AggregatedCost.Builder | Total cost of this graph, typically used for balancing decisions. |
CostGraphDef.AggregatedCostOrBuilder | |
CostGraphDef.Builder | Protobuf type tensorflow.CostGraphDef
|
CostGraphDef.Node | Protobuf type tensorflow.CostGraphDef.Node
|
CostGraphDef.Node.Builder | Protobuf type tensorflow.CostGraphDef.Node
|
CostGraphDef.Node.InputInfo | Inputs of this node. |
CostGraphDef.Node.InputInfo.Builder | Inputs of this node. |
CostGraphDef.Node.InputInfoOrBuilder | |
CostGraphDef.Node.OutputInfo | Outputs of this node. |
CostGraphDef.Node.OutputInfo.Builder | Outputs of this node. |
CostGraphDef.Node.OutputInfoOrBuilder | |
CostGraphDef.NodeOrBuilder | |
CostGraphDefOrBuilder | |
CostGraphProtos | |
CountUpTo<T extends TNumber> | Increments 'ref' until it reaches 'limit'. |
CPUInfo | Protobuf type tensorflow.CPUInfo
|
CPUInfo.Builder | Protobuf type tensorflow.CPUInfo
|
CPUInfoOrBuilder | |
Create_func_TF_OpKernelConstruction | |
CreateSummaryDbWriter | |
CreateSummaryFileWriter | |
CropAndResize | Extracts crops from the input image tensor and resizes them. |
CropAndResize.Options | Optional attributes for CropAndResize
|
CropAndResizeGradBoxes | Computes the gradient of the crop_and_resize op wrt the input boxes tensor. |
CropAndResizeGradBoxes.Options | Optional attributes for CropAndResizeGradBoxes
|
CropAndResizeGradImage<T extends TNumber> | Computes the gradient of the crop_and_resize op wrt the input image tensor. |
CropAndResizeGradImage.Options | Optional attributes for CropAndResizeGradImage
|
Cross<T extends TNumber> | Compute the pairwise cross product. |
CrossReplicaSum<T extends TNumber> | An Op to sum inputs across replicated TPU instances. |
CSRSparseMatrixComponents<T extends TType> | Reads out the CSR components at batch `index`. |
CSRSparseMatrixToDense<T extends TType> | Convert a (possibly batched) CSRSparseMatrix to dense. |
CSRSparseMatrixToSparseTensor<T extends TType> | Converts a (possibly batched) CSRSparesMatrix to a SparseTensor. |
CSVDataset | |
CSVDataset | |
CSVDatasetV2 | |
CtcBeamSearchDecoder<T extends TNumber> | Performs beam search decoding on the logits given in input. |
CtcBeamSearchDecoder.Options | Optional attributes for CtcBeamSearchDecoder
|
CtcGreedyDecoder<T extends TNumber> | Performs greedy decoding on the logits given in inputs. |
CtcGreedyDecoder.Options | Optional attributes for CtcGreedyDecoder
|
CtcLoss<T extends TNumber> | Calculates the CTC Loss (log probability) for each batch entry. |
CtcLoss.Options | Optional attributes for CtcLoss
|
CTCLossV2 | Calculates the CTC Loss (log probability) for each batch entry. |
CTCLossV2.Options | Optional attributes for CTCLossV2
|
CudnnRNN<T extends TNumber> | A RNN backed by cuDNN. |
CudnnRNN.Options | Optional attributes for CudnnRNN
|
CudnnRNNBackprop<T extends TNumber> | Backprop step of CudnnRNNV3. |
CudnnRNNBackprop.Options | Optional attributes for CudnnRNNBackprop
|
CudnnRNNCanonicalToParams<T extends TNumber> | Converts CudnnRNN params from canonical form to usable form. |
CudnnRNNCanonicalToParams.Options | Optional attributes for CudnnRNNCanonicalToParams
|
CudnnRnnParamsSize<U extends TNumber> | Computes size of weights that can be used by a Cudnn RNN model. |
CudnnRnnParamsSize.Options | Optional attributes for CudnnRnnParamsSize
|
CudnnRNNParamsToCanonical<T extends TNumber> | Retrieves CudnnRNN params in canonical form. |
CudnnRNNParamsToCanonical.Options | Optional attributes for CudnnRNNParamsToCanonical
|
Cumprod<T extends TType> | Compute the cumulative product of the tensor `x` along `axis`. |
Cumprod.Options | Optional attributes for Cumprod
|
Cumsum<T extends TType> | Compute the cumulative sum of the tensor `x` along `axis`. |
Cumsum.Options | Optional attributes for Cumsum
|
CumulativeLogsumexp<T extends TNumber> | Compute the cumulative product of the tensor `x` along `axis`. |
CumulativeLogsumexp.Options | Optional attributes for CumulativeLogsumexp
|
D
DataBuffer<T> | A container of data of a specific type. |
DataBufferAdapterFactory | Factory of data buffer adapters. |
DataBuffers | Helper class for creating DataBuffer instances. |
DataBufferWindow<B extends DataBuffer<?>> | A mutable container for viewing part of a DataBuffer . |
DataClass | Protobuf enum tensorflow.DataClass
|
DataFormatDimMap<T extends TNumber> | Returns the dimension index in the destination data format given the one in
the source data format. |
DataFormatDimMap.Options | Optional attributes for DataFormatDimMap
|
DataFormatVecPermute<T extends TNumber> | Permute input tensor from `src_format` to `dst_format`. |
DataFormatVecPermute.Options | Optional attributes for DataFormatVecPermute
|
DataLayout<S extends DataBuffer<?>, T> | Converts data stored in a buffer to a given type. |
DataLayouts | Exposes DataLayout instances of data formats frequently used in linear algebra computation. |
DataServiceDataset | |
DataServiceDataset.Options | Optional attributes for DataServiceDataset
|
Dataset | Represents a potentially large list of independent elements (samples), and allows iteration and transformations to be performed across these elements. |
DatasetCardinality | Returns the cardinality of `input_dataset`. |
DatasetCardinality | Returns the cardinality of `input_dataset`. |
DatasetFromGraph | Creates a dataset from the given `graph_def`. |
DatasetIterator | Represents the state of an iteration through a tf.data Datset. |
DatasetOptional | An optional represents the result of a dataset getNext operation that may fail, when the end of the dataset has been reached. |
DatasetToGraph | Returns a serialized GraphDef representing `input_dataset`. |
DatasetToGraph.Options | Optional attributes for DatasetToGraph
|
DatasetToSingleElement | Outputs the single element from the given dataset. |
DatasetToTfRecord | Writes the given dataset to the given file using the TFRecord format. |
DatasetToTFRecord | Writes the given dataset to the given file using the TFRecord format. |
DataStorageVisitor<R> | Visit the backing storage of DataBuffer instances. |
DataType | (== suppress_warning documentation-presence ==) LINT.IfChange tensorflow.DataType
|
Dawsn<T extends TNumber> | |
Deallocator_Pointer_long_Pointer | |
DebugEvent | An Event related to the debugging of a TensorFlow program. |
DebugEvent.Builder | An Event related to the debugging of a TensorFlow program. |
DebugEvent.WhatCase | |
DebugEventOrBuilder | |
DebugEventProtos | |
DebuggedDevice | A device on which ops and/or tensors are instrumented by the debugger. |
DebuggedDevice.Builder | A device on which ops and/or tensors are instrumented by the debugger. |
DebuggedDeviceOrBuilder | |
DebuggedGraph | A debugger-instrumented graph. |
DebuggedGraph.Builder | A debugger-instrumented graph. |
DebuggedGraphOrBuilder | |
DebuggedSourceFile | Protobuf type tensorflow.DebuggedSourceFile
|
DebuggedSourceFile.Builder | Protobuf type tensorflow.DebuggedSourceFile
|
DebuggedSourceFileOrBuilder | |
DebuggedSourceFiles | Protobuf type tensorflow.DebuggedSourceFiles
|
DebuggedSourceFiles.Builder | Protobuf type tensorflow.DebuggedSourceFiles
|
DebuggedSourceFilesOrBuilder | |
DebugGradientIdentity<T extends TType> | Identity op for gradient debugging. |
DebugGradientRefIdentity<T extends TType> | Identity op for gradient debugging. |
DebugIdentity<T extends TType> | Debug Identity V2 Op. |
DebugIdentity.Options | Optional attributes for DebugIdentity
|
DebugMetadata | Metadata about the debugger and the debugged TensorFlow program. |
DebugMetadata.Builder | Metadata about the debugger and the debugged TensorFlow program. |
DebugMetadataOrBuilder | |
DebugNanCount | Debug NaN Value Counter Op. |
DebugNanCount.Options | Optional attributes for DebugNanCount
|
DebugNumericsSummary<U extends TNumber> | Debug Numeric Summary V2 Op. |
DebugNumericsSummary.Options | Optional attributes for DebugNumericsSummary
|
DebugOptions | Options for initializing DebuggerState in TensorFlow Debugger (tfdbg). |
DebugOptions.Builder | Options for initializing DebuggerState in TensorFlow Debugger (tfdbg). |
DebugOptionsOrBuilder | |
DebugProtos | |
DebugTensorWatch | Option for watching a node in TensorFlow Debugger (tfdbg). |
DebugTensorWatch.Builder | Option for watching a node in TensorFlow Debugger (tfdbg). |
DebugTensorWatchOrBuilder | |
DecodeAndCropJpeg | Decode and Crop a JPEG-encoded image to a uint8 tensor. |
DecodeAndCropJpeg.Options | Optional attributes for DecodeAndCropJpeg
|
DecodeBase64 | Decode web-safe base64-encoded strings. |
DecodeBmp | Decode the first frame of a BMP-encoded image to a uint8 tensor. |
DecodeBmp.Options | Optional attributes for DecodeBmp
|
DecodeCompressed | Decompress strings. |
DecodeCompressed.Options | Optional attributes for DecodeCompressed
|
DecodeCsv | Convert CSV records to tensors. |
DecodeCsv.Options | Optional attributes for DecodeCsv
|
DecodeGif | Decode the frame(s) of a GIF-encoded image to a uint8 tensor. |
DecodeImage<T extends TNumber> | Function for decode_bmp, decode_gif, decode_jpeg, and decode_png. |
DecodeImage.Options | Optional attributes for DecodeImage
|
DecodeJpeg | Decode a JPEG-encoded image to a uint8 tensor. |
DecodeJpeg.Options | Optional attributes for DecodeJpeg
|
DecodeJsonExample | Convert JSON-encoded Example records to binary protocol buffer strings. |
DecodePaddedRaw<T extends TNumber> | Reinterpret the bytes of a string as a vector of numbers. |
DecodePaddedRaw.Options | Optional attributes for DecodePaddedRaw
|
DecodePng<T extends TNumber> | Decode a PNG-encoded image to a uint8 or uint16 tensor. |
DecodePng.Options | Optional attributes for DecodePng
|
DecodeProto | The op extracts fields from a serialized protocol buffers message into tensors. |
DecodeProto.Options | Optional attributes for DecodeProto
|
DecodeRaw<T extends TType> | Reinterpret the bytes of a string as a vector of numbers. |
DecodeRaw.Options | Optional attributes for DecodeRaw
|
DecodeWav | Decode a 16-bit PCM WAV file to a float tensor. |
DecodeWav.Options | Optional attributes for DecodeWav
|
DeepCopy<T extends TType> | Makes a copy of `x`. |
Delete_func_Pointer | |
DeleteIterator | A container for an iterator resource. |
DeleteMemoryCache | |
DeleteMultiDeviceIterator | A container for an iterator resource. |
DeleteRandomSeedGenerator | |
DeleteSeedGenerator | |
DeleteSessionTensor | Delete the tensor specified by its handle in the session. |
DenseBincount<U extends TNumber> | Counts the number of occurrences of each value in an integer array. |
DenseBincount.Options | Optional attributes for DenseBincount
|
DenseCountSparseOutput<U extends TNumber> | Performs sparse-output bin counting for a tf.tensor input. |
DenseCountSparseOutput.Options | Optional attributes for DenseCountSparseOutput
|
DenseNdArray<T> | |
DenseToCSRSparseMatrix | Converts a dense tensor to a (possibly batched) CSRSparseMatrix. |
DenseToDenseSetOperation<T extends TType> | Applies set operation along last dimension of 2 `Tensor` inputs. |
DenseToDenseSetOperation.Options | Optional attributes for DenseToDenseSetOperation
|
DenseToSparseBatchDataset | Creates a dataset that batches input elements into a SparseTensor. |
DenseToSparseBatchDataset | Creates a dataset that batches input elements into a SparseTensor. |
DenseToSparseSetOperation<T extends TType> | Applies set operation along last dimension of `Tensor` and `SparseTensor`. |
DenseToSparseSetOperation.Options | Optional attributes for DenseToSparseSetOperation
|
DepthToSpace<T extends TType> | DepthToSpace for tensors of type T. |
DepthToSpace.Options | Optional attributes for DepthToSpace
|
DepthwiseConv2dNative<T extends TNumber> | Computes a 2-D depthwise convolution given 4-D `input` and `filter` tensors. |
DepthwiseConv2dNative.Options | Optional attributes for DepthwiseConv2dNative
|
DepthwiseConv2dNativeBackpropFilter<T extends TNumber> | Computes the gradients of depthwise convolution with respect to the filter. |
DepthwiseConv2dNativeBackpropFilter.Options | Optional attributes for DepthwiseConv2dNativeBackpropFilter
|
DepthwiseConv2dNativeBackpropInput<T extends TNumber> | Computes the gradients of depthwise convolution with respect to the input. |
DepthwiseConv2dNativeBackpropInput.Options | Optional attributes for DepthwiseConv2dNativeBackpropInput
|
Dequantize<U extends TNumber> | Dequantize the 'input' tensor into a float or bfloat16 Tensor. |
Dequantize | Takes the packed uint32 input and unpacks the input to uint8 to do
Dequantization on device. |
Dequantize.Options | Optional attributes for Dequantize
|
DeserializeIterator | Converts the given variant tensor to an iterator and stores it in the given resource. |
DeserializeManySparse<T extends TType> | Deserialize and concatenate `SparseTensors` from a serialized minibatch. |
DeserializeSparse<U extends TType> | Deserialize `SparseTensor` objects. |
DestroyResourceOp | Deletes the resource specified by the handle. |
DestroyResourceOp.Options | Optional attributes for DestroyResourceOp
|
DestroyTemporaryVariable<T extends TType> | Destroys the temporary variable and returns its final value. |
Det<T extends TType> | Computes the determinant of one or more square matrices. |
DeviceAttributes | Protobuf type tensorflow.DeviceAttributes
|
DeviceAttributes.Builder | Protobuf type tensorflow.DeviceAttributes
|
DeviceAttributesOrBuilder | |
DeviceAttributesProtos | |
DeviceFiltersProtos | |
DeviceIndex | Return the index of device the op runs. |
DeviceLocality | Protobuf type tensorflow.DeviceLocality
|
DeviceLocality.Builder | Protobuf type tensorflow.DeviceLocality
|
DeviceLocalityOrBuilder | |
DeviceProperties | Protobuf type tensorflow.DeviceProperties
|
DeviceProperties.Builder | Protobuf type tensorflow.DeviceProperties
|
DevicePropertiesOrBuilder | |
DevicePropertiesProtos | |
DeviceSpec | Represents a (possibly partial) specification for a TensorFlow device. |
DeviceSpec.Builder | A Builder class for building DeviceSpec class. |
DeviceSpec.DeviceType | |
DeviceStepStats | Protobuf type tensorflow.DeviceStepStats
|
DeviceStepStats.Builder | Protobuf type tensorflow.DeviceStepStats
|
DeviceStepStatsOrBuilder | |
DictValue | Represents a Python dict keyed by `str`. |
DictValue.Builder | Represents a Python dict keyed by `str`. |
DictValueOrBuilder | |
Digamma<T extends TNumber> | Computes Psi, the derivative of Lgamma (the log of the absolute value of
`Gamma(x)`), element-wise. |
Dilation2d<T extends TNumber> | Computes the grayscale dilation of 4-D `input` and 3-D `filter` tensors. |
Dilation2dBackpropFilter<T extends TNumber> | Computes the gradient of morphological 2-D dilation with respect to the filter. |
Dilation2dBackpropInput<T extends TNumber> | Computes the gradient of morphological 2-D dilation with respect to the input. |
Dimension | |
DimensionalSpace | |
DirectedInterleaveDataset | A substitute for `InterleaveDataset` on a fixed list of `N` datasets. |
DirectedInterleaveDataset | A substitute for `InterleaveDataset` on a fixed list of `N` datasets. |
Div<T extends TType> | Returns x / y element-wise. |
DivNoNan<T extends TType> | Returns 0 if the denominator is zero. |
Dot<T extends TType> | Wraps the XLA DotGeneral operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#dotgeneral . |
DoubleDataBuffer | A DataBuffer of doubles. |
DoubleDataLayout<S extends DataBuffer<?>> | A DataLayout that converts data stored in a buffer to doubles. |
DoubleDenseNdArray | |
DoubleNdArray | An NdArray of doubles. |
DrawBoundingBoxes<T extends TNumber> | Draw bounding boxes on a batch of images. |
DummyIterationCounter | |
DummyMemoryCache | |
DummySeedGenerator | |
DynamicPartition<T extends TType> | Partitions `data` into `num_partitions` tensors using indices from `partitions`. |
DynamicSlice<T extends TType> | Wraps the XLA DynamicSlice operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#dynamicslice . |
DynamicStitch<T extends TType> | Interleave the values from the `data` tensors into a single tensor. |
DynamicUpdateSlice<T extends TType> | Wraps the XLA DynamicUpdateSlice operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#dynamicupdateslice . |
E
EagerSession | An environment for executing TensorFlow operations eagerly. |
EagerSession.DevicePlacementPolicy | Controls how to act when we try to run an operation on a given device but some input tensors are not on that device. |
EagerSession.Options | |
EditDistance | Computes the (possibly normalized) Levenshtein Edit Distance. |
EditDistance.Options | Optional attributes for EditDistance
|
Eig<U extends TType> | Computes the eigen decomposition of one or more square matrices. |
Eig.Options | Optional attributes for Eig
|
Einsum<T extends TType> | Tensor contraction according to Einstein summation convention. |
Einsum<T extends TType> | An op which supports basic einsum op with 2 inputs and 1 output. |
Elu<T extends TNumber> | Computes exponential linear: `exp(features) - 1` if < 0, `features` otherwise. |
ELU<T extends TFloating> | Exponential linear unit. |
EluGrad<T extends TNumber> | Computes gradients for the exponential linear (Elu) operation. |
EmbeddingActivations | An op enabling differentiation of TPU Embeddings. |
Empty<T extends TType> | Creates a tensor with the given shape. |
Empty.Options | Optional attributes for Empty
|
EmptyTensorList | Creates and returns an empty tensor list. |
EmptyTensorMap | Creates and returns an empty tensor map. |
EncodeBase64 | Encode strings into web-safe base64 format. |
EncodeBase64.Options | Optional attributes for EncodeBase64
|
EncodeJpeg | JPEG-encode an image. |
EncodeJpeg.Options | Optional attributes for EncodeJpeg
|
EncodeJpegVariableQuality | JPEG encode input image with provided compression quality. |
EncodePng | PNG-encode an image. |
EncodePng.Options | Optional attributes for EncodePng
|
EncodeProto | The op serializes protobuf messages provided in the input tensors. |
EncodeProto.Options | Optional attributes for EncodeProto
|
EncodeWav | Encode audio data using the WAV file format. |
Endpoint | Annotation used to mark a method of a class annotated with @Operator that should
generate an endpoint into ERROR(Ops/org.tensorflow.op.Ops Ops) or one of its groups. |
EnqueueTPUEmbeddingIntegerBatch | An op that enqueues a list of input batch tensors to TPUEmbedding. |
EnqueueTPUEmbeddingIntegerBatch.Options | Optional attributes for EnqueueTPUEmbeddingIntegerBatch
|
EnqueueTPUEmbeddingRaggedTensorBatch | Eases the porting of code that uses tf.nn.embedding_lookup(). |
EnqueueTPUEmbeddingRaggedTensorBatch.Options | Optional attributes for EnqueueTPUEmbeddingRaggedTensorBatch
|
EnqueueTPUEmbeddingSparseBatch | An op that enqueues TPUEmbedding input indices from a SparseTensor. |
EnqueueTPUEmbeddingSparseBatch.Options | Optional attributes for EnqueueTPUEmbeddingSparseBatch
|
EnqueueTPUEmbeddingSparseTensorBatch | Eases the porting of code that uses tf.nn.embedding_lookup_sparse(). |
EnqueueTPUEmbeddingSparseTensorBatch.Options | Optional attributes for EnqueueTPUEmbeddingSparseTensorBatch
|
EnsureShape<T extends TType> | Ensures that the tensor's shape matches the expected shape. |
Enter<T extends TType> | Creates or finds a child frame, and makes `data` available to the child frame. |
Enter.Options | Optional attributes for Enter
|
EntryValue | Protobuf type tensorflow.EntryValue
|
EntryValue.Builder | Protobuf type tensorflow.EntryValue
|
EntryValue.KindCase | |
EntryValueOrBuilder | |
Equal | Returns the truth value of (x == y) element-wise. |
Equal.Options | Optional attributes for Equal
|
Erf<T extends TNumber> | Computes the Gauss error function of `x` element-wise. |
Erfc<T extends TNumber> | Computes the complementary error function of `x` element-wise. |
erfinv<T extends TNumber> | |
ErrorCodes | |
ErrorCodesProtos | |
EuclideanNorm<T extends TType> | Computes the euclidean norm of elements across dimensions of a tensor. |
EuclideanNorm.Options | Optional attributes for EuclideanNorm
|
Event | Protocol buffer representing an event that happened during the execution of a Brain model. |
Event.Builder | Protocol buffer representing an event that happened during the execution of a Brain model. |
Event.WhatCase | |
EventOrBuilder | |
EventProtos | |
Example | Protobuf type tensorflow.Example
|
Example.Builder | Protobuf type tensorflow.Example
|
ExampleOrBuilder | |
ExampleParserConfiguration | Protobuf type tensorflow.ExampleParserConfiguration
|
ExampleParserConfiguration.Builder | Protobuf type tensorflow.ExampleParserConfiguration
|
ExampleParserConfigurationOrBuilder | |
ExampleParserConfigurationProtos | |
ExampleProtos | |
Execute | Op that loads and executes a TPU program on a TPU device. |
ExecuteAndUpdateVariables | Op that executes a program with optional in-place variable updates. |
Execution | Data relating to the eager execution of an op or a Graph. |
Execution.Builder | Data relating to the eager execution of an op or a Graph. |
ExecutionEnvironment | Defines an environment for creating and executing TensorFlow Operation s. |
ExecutionEnvironment.Types | |
ExecutionOrBuilder | |
Exit<T extends TType> | Exits the current frame to its parent frame. |
Exp<T extends TType> | Computes exponential of x element-wise. |
ExpandDims<T extends TType> | Inserts a dimension of 1 into a tensor's shape. |
Expint<T extends TNumber> | |
Expm1<T extends TType> | Computes `exp(x) - 1` element-wise. |
Exponential<T extends TFloating> | Exponential activation function. |
ExtractGlimpse | Extracts a glimpse from the input tensor. |
ExtractGlimpse.Options | Optional attributes for ExtractGlimpse
|
ExtractImagePatches<T extends TType> | Extract `patches` from `images` and put them in the "depth" output dimension. |
ExtractJpegShape<T extends TNumber> | Extract the shape information of a JPEG-encoded image. |
ExtractVolumePatches<T extends TNumber> | Extract `patches` from `input` and put them in the `"depth"` output dimension. |
F
Fact | Output a fact about factorials. |
FakeQuantWithMinMaxArgs | Fake-quantize the 'inputs' tensor, type float to 'outputs' tensor of same type. |
FakeQuantWithMinMaxArgs.Options | Optional attributes for FakeQuantWithMinMaxArgs
|
FakeQuantWithMinMaxArgsGradient | Compute gradients for a FakeQuantWithMinMaxArgs operation. |
FakeQuantWithMinMaxArgsGradient.Options | Optional attributes for FakeQuantWithMinMaxArgsGradient
|
FakeQuantWithMinMaxVars | Fake-quantize the 'inputs' tensor of type float via global float scalars
Fake-quantize the `inputs` tensor of type float via global float scalars `min` and `max` to `outputs` tensor of same shape as `inputs`. |
FakeQuantWithMinMaxVars.Options | Optional attributes for FakeQuantWithMinMaxVars
|
FakeQuantWithMinMaxVarsGradient | Compute gradients for a FakeQuantWithMinMaxVars operation. |
FakeQuantWithMinMaxVarsGradient.Options | Optional attributes for FakeQuantWithMinMaxVarsGradient
|
FakeQuantWithMinMaxVarsPerChannel | Fake-quantize the 'inputs' tensor of type float via per-channel floats
Fake-quantize the `inputs` tensor of type float per-channel and one of the shapes: `[d]`, `[b, d]` `[b, h, w, d]` via per-channel floats `min` and `max` of shape `[d]` to `outputs` tensor of same shape as `inputs`. |
FakeQuantWithMinMaxVarsPerChannel.Options | Optional attributes for FakeQuantWithMinMaxVarsPerChannel
|
FakeQuantWithMinMaxVarsPerChannelGradient | Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation. |
FakeQuantWithMinMaxVarsPerChannelGradient.Options | Optional attributes for FakeQuantWithMinMaxVarsPerChannelGradient
|
FastElementSequence<T, U extends NdArray<T>> | A sequence recycling the same NdArray instance when iterating its elements |
Feature | Containers for non-sequential data. |
Feature.Builder | Containers for non-sequential data. |
Feature.KindCase | |
FeatureConfiguration | Protobuf type tensorflow.FeatureConfiguration
|
FeatureConfiguration.Builder | Protobuf type tensorflow.FeatureConfiguration
|
FeatureConfiguration.ConfigCase | |
FeatureConfigurationOrBuilder | |
FeatureList | Containers for sequential data. |
FeatureList.Builder | Containers for sequential data. |
FeatureListOrBuilder | |
FeatureLists | Protobuf type tensorflow.FeatureLists
|
FeatureLists.Builder | Protobuf type tensorflow.FeatureLists
|
FeatureListsOrBuilder | |
FeatureOrBuilder | |
FeatureProtos | |
Features | Protobuf type tensorflow.Features
|
Features.Builder | Protobuf type tensorflow.Features
|
FeaturesOrBuilder | |
Fft<T extends TType> | Fast Fourier transform. |
Fft2d<T extends TType> | 2D fast Fourier transform. |
Fft3d<T extends TType> | 3D fast Fourier transform. |
FifoQueue | A queue that produces elements in first-in first-out order. |
FifoQueue.Options | Optional attributes for FifoQueue
|
Fill<U extends TType> | Creates a tensor filled with a scalar value. |
FilterByLastComponentDataset | Creates a dataset containing elements of first component of `input_dataset` having true in the last component. |
Fingerprint | Generates fingerprint values. |
FixedLenFeatureProto | Protobuf type tensorflow.FixedLenFeatureProto
|
FixedLenFeatureProto.Builder | Protobuf type tensorflow.FixedLenFeatureProto
|
FixedLenFeatureProtoOrBuilder | |
FixedLengthRecordDataset | |
FixedLengthRecordReader | A Reader that outputs fixed-length records from a file. |
FixedLengthRecordReader.Options | Optional attributes for FixedLengthRecordReader
|
FixedUnigramCandidateSampler | Generates labels for candidate sampling with a learned unigram distribution. |
FixedUnigramCandidateSampler.Options | Optional attributes for FixedUnigramCandidateSampler
|
Float16Layout | Data layout that converts 32-bit floats from/to 16-bit, accordingly to the IEEE-754 half-precision floating point specification. |
FloatDataBuffer | A DataBuffer of floats. |
FloatDataLayout<S extends DataBuffer<?>> | A DataLayout that converts data stored in a buffer to floats. |
FloatDenseNdArray | |
FloatList | Protobuf type tensorflow.FloatList
|
FloatList.Builder | Protobuf type tensorflow.FloatList
|
FloatListOrBuilder | |
FloatNdArray | An NdArray of floats. |
Floor<T extends TNumber> | Returns element-wise largest integer not greater than x. |
FloorDiv<T extends TType> | Returns x // y element-wise. |
FloorMod<T extends TNumber> | Returns element-wise remainder of division. |
FlushSummaryWriter | |
FractionalAvgPool<T extends TNumber> | Performs fractional average pooling on the input. |
FractionalAvgPool.Options | Optional attributes for FractionalAvgPool
|
FractionalAvgPoolGrad<T extends TNumber> | Computes gradient of the FractionalAvgPool function. |
FractionalAvgPoolGrad.Options | Optional attributes for FractionalAvgPoolGrad
|
FractionalMaxPool<T extends TNumber> | Performs fractional max pooling on the input. |
FractionalMaxPool.Options | Optional attributes for FractionalMaxPool
|
FractionalMaxPoolGrad<T extends TNumber> | Computes gradient of the FractionalMaxPool function. |
FractionalMaxPoolGrad.Options | Optional attributes for FractionalMaxPoolGrad
|
FresnelCos<T extends TNumber> | |
FresnelSin<T extends TNumber> | |
Ftrl | Optimizer that implements the FTRL algorithm. |
FunctionDef | A function can be instantiated when the runtime can bind every attr with a value. |
FunctionDef.ArgAttrs | Attributes for function arguments. |
FunctionDef.ArgAttrs.Builder | Attributes for function arguments. |
FunctionDef.ArgAttrsOrBuilder | |
FunctionDef.Builder | A function can be instantiated when the runtime can bind every attr with a value. |
FunctionDefLibrary | A library is a set of named functions. |
FunctionDefLibrary.Builder | A library is a set of named functions. |
FunctionDefLibraryOrBuilder | |
FunctionDefOrBuilder | |
FunctionProtos | |
FunctionSpec | Represents `FunctionSpec` used in `Function`. |
FunctionSpec.Builder | Represents `FunctionSpec` used in `Function`. |
FunctionSpec.ExperimentalCompile | Whether the function should be compiled by XLA. |
FunctionSpecOrBuilder | |
FusedBatchNorm<T extends TNumber, U extends TNumber> | Batch normalization. |
FusedBatchNorm.Options | Optional attributes for FusedBatchNorm
|
FusedBatchNormGrad<T extends TNumber, U extends TNumber> | Gradient for batch normalization. |
FusedBatchNormGrad.Options | Optional attributes for FusedBatchNormGrad
|
FusedPadConv2d<T extends TNumber> | Performs a padding as a preprocess during a convolution. |
FusedResizeAndPadConv2d<T extends TNumber> | Performs a resize and padding as a preprocess during a convolution. |
FusedResizeAndPadConv2d.Options | Optional attributes for FusedResizeAndPadConv2d
|
G
Gather<T extends TNumber> | Mutually accumulates multiple tensors of identical type and shape. |
Gather<T extends TType> | Gather slices from `params` axis `axis` according to `indices`. |
Gather<T extends TType> | Wraps the XLA Gather operator documented at
https://www.tensorflow.org/xla/operation_semantics#gather |
Gather.Options | Optional attributes for Gather
|
Gather.Options | Optional attributes for Gather
|
GatherNd<T extends TType> | Gather slices from `params` into a Tensor with shape specified by `indices`. |
GatherV2<T extends TNumber> | Mutually accumulates multiple tensors of identical type and shape. |
GatherV2.Options | Optional attributes for GatherV2
|
GenerateBoundingBoxProposals | This op produces Region of Interests from given bounding boxes(bbox_deltas) encoded wrt anchors according to eq.2 in arXiv:1506.01497
The op selects top `pre_nms_topn` scoring boxes, decodes them with respect to anchors, applies non-maximal suppression on overlapping boxes with higher than `nms_threshold` intersection-over-union (iou) value, discarding boxes where shorter side is less than `min_size`. |
GenerateBoundingBoxProposals.Options | Optional attributes for GenerateBoundingBoxProposals
|
GenerateVocabRemapping | Given a path to new and old vocabulary files, returns a remapping Tensor of
length `num_new_vocab`, where `remapping[i]` contains the row number in the old vocabulary that corresponds to row `i` in the new vocabulary (starting at line `new_vocab_offset` and up to `num_new_vocab` entities), or `-1` if entry `i` in the new vocabulary is not in the old vocabulary. |
GenerateVocabRemapping.Options | Optional attributes for GenerateVocabRemapping
|
GetSessionHandle | Store the input tensor in the state of the current session. |
GetSessionTensor<T extends TType> | Get the value of the tensor specified by its handle. |
Glorot<T extends TFloating> | The Glorot initializer, also called Xavier initializer. |
GPUInfo | Protobuf type tensorflow.GPUInfo
|
GPUInfo.Builder | Protobuf type tensorflow.GPUInfo
|
GPUInfoOrBuilder | |
GPUOptions | Protobuf type tensorflow.GPUOptions
|
GPUOptions.Builder | Protobuf type tensorflow.GPUOptions
|
GPUOptions.Experimental | Protobuf type tensorflow.GPUOptions.Experimental
|
GPUOptions.Experimental.Builder | Protobuf type tensorflow.GPUOptions.Experimental
|
GPUOptions.Experimental.VirtualDevices | Configuration for breaking down a visible GPU into multiple "virtual" devices. |
GPUOptions.Experimental.VirtualDevices.Builder | Configuration for breaking down a visible GPU into multiple "virtual" devices. |
GPUOptions.Experimental.VirtualDevicesOrBuilder | |
GPUOptions.ExperimentalOrBuilder | |
GPUOptionsOrBuilder | |
GradientDef | GradientDef defines the gradient function of a function defined in a function library. |
GradientDef.Builder | GradientDef defines the gradient function of a function defined in a function library. |
GradientDefOrBuilder | |
GradientDescent | Basic Stochastic gradient descent optimizer. |
Gradients | Adds operations to compute the partial derivatives of sum of y s w.r.t x s,
i.e., d(y_1 + y_2 + ...)/dx_1, d(y_1 + y_2 + ...)/dx_2...
If |
Gradients.Options | Optional attributes for Gradients
|
Graph | A data flow graph representing a TensorFlow computation. |
Graph.WhileSubgraphBuilder | Used to instantiate an abstract class which overrides the buildSubgraph method to build a conditional or body subgraph for a while loop. |
GraphDebugInfo | Protobuf type tensorflow.GraphDebugInfo
|
GraphDebugInfo.Builder | Protobuf type tensorflow.GraphDebugInfo
|
GraphDebugInfo.FileLineCol | This represents a file/line location in the source code. |
GraphDebugInfo.FileLineCol.Builder | This represents a file/line location in the source code. |
GraphDebugInfo.FileLineColOrBuilder | |
GraphDebugInfo.StackTrace | This represents a stack trace which is a ordered list of `FileLineCol`. |
GraphDebugInfo.StackTrace.Builder | This represents a stack trace which is a ordered list of `FileLineCol`. |
GraphDebugInfo.StackTraceOrBuilder | |
GraphDebugInfoOrBuilder | |
GraphDebugInfoProtos | |
GraphDef | Represents the graph of operations tensorflow.GraphDef
|
GraphDef.Builder | Represents the graph of operations tensorflow.GraphDef
|
GraphDefOrBuilder | |
GraphExecutionTrace | Data relating to an execution of a Graph (e.g., an eager execution of a FuncGraph). |
GraphExecutionTrace.Builder | Data relating to an execution of a Graph (e.g., an eager execution of a FuncGraph). |
GraphExecutionTraceOrBuilder | |
GraphOpCreation | The creation of an op in a TensorFlow Graph (e.g., FuncGraph in TF2). |
GraphOpCreation.Builder | The creation of an op in a TensorFlow Graph (e.g., FuncGraph in TF2). |
GraphOpCreationOrBuilder | |
GraphOperation | Implementation for an Operation added as a node to a Graph . |
GraphOperationBuilder | An OperationBuilder for adding GraphOperation s to a Graph . |
GraphOptions | Protobuf type tensorflow.GraphOptions
|
GraphOptions.Builder | Protobuf type tensorflow.GraphOptions
|
GraphOptionsOrBuilder | |
GraphProtos | |
GraphTransferConstNodeInfo | Protobuf type tensorflow.GraphTransferConstNodeInfo
|
GraphTransferConstNodeInfo.Builder | Protobuf type tensorflow.GraphTransferConstNodeInfo
|
GraphTransferConstNodeInfoOrBuilder | |
GraphTransferGraphInputNodeInfo | Protobuf type tensorflow.GraphTransferGraphInputNodeInfo
|
GraphTransferGraphInputNodeInfo.Builder | Protobuf type tensorflow.GraphTransferGraphInputNodeInfo
|
GraphTransferGraphInputNodeInfoOrBuilder | |
GraphTransferGraphOutputNodeInfo | Protobuf type tensorflow.GraphTransferGraphOutputNodeInfo
|
GraphTransferGraphOutputNodeInfo.Builder | Protobuf type tensorflow.GraphTransferGraphOutputNodeInfo
|
GraphTransferGraphOutputNodeInfoOrBuilder | |
GraphTransferInfo | Protocol buffer representing a handle to a tensorflow resource. |
GraphTransferInfo.Builder | Protocol buffer representing a handle to a tensorflow resource. |
GraphTransferInfo.Destination | Protobuf enum tensorflow.GraphTransferInfo.Destination
|
GraphTransferInfoOrBuilder | |
GraphTransferInfoProto | |
GraphTransferNodeInfo | Protobuf type tensorflow.GraphTransferNodeInfo
|
GraphTransferNodeInfo.Builder | Protobuf type tensorflow.GraphTransferNodeInfo
|
GraphTransferNodeInfoOrBuilder | |
GraphTransferNodeInput | Protobuf type tensorflow.GraphTransferNodeInput
|
GraphTransferNodeInput.Builder | Protobuf type tensorflow.GraphTransferNodeInput
|
GraphTransferNodeInputInfo | Protobuf type tensorflow.GraphTransferNodeInputInfo
|
GraphTransferNodeInputInfo.Builder | Protobuf type tensorflow.GraphTransferNodeInputInfo
|
GraphTransferNodeInputInfoOrBuilder | |
GraphTransferNodeInputOrBuilder | |
GraphTransferNodeOutputInfo | Protobuf type tensorflow.GraphTransferNodeOutputInfo
|
GraphTransferNodeOutputInfo.Builder | Protobuf type tensorflow.GraphTransferNodeOutputInfo
|
GraphTransferNodeOutputInfoOrBuilder | |
Greater | Returns the truth value of (x > y) element-wise. |
GreaterEqual | Returns the truth value of (x >= y) element-wise. |
GRUBlockCell<T extends TNumber> | Computes the GRU cell forward propagation for 1 time step. |
GRUBlockCellGrad<T extends TNumber> | Computes the GRU cell back-propagation for 1 time step. |
GuaranteeConst<T extends TType> | Gives a guarantee to the TF runtime that the input tensor is a constant. |
H
HardSigmoid<T extends TFloating> | Hard sigmoid activation. |
HashTable | Creates a non-initialized hash table. |
HashTable.Options | Optional attributes for HashTable
|
He<T extends TFloating> | He initializer. |
Helpers | Container class for core methods which add or perform several operations and return one of them. |
Hinge | Computes the hinge loss between labels and predictions. |
Hinge<T extends TNumber> | A metric that computes the hinge loss metric between labels and predictions. |
HistogramFixedWidth<U extends TNumber> | Return histogram of values. |
HistogramProto | Serialization format for histogram module in core/lib/histogram/histogram.h tensorflow.HistogramProto
|
HistogramProto.Builder | Serialization format for histogram module in core/lib/histogram/histogram.h tensorflow.HistogramProto
|
HistogramProtoOrBuilder | |
HistogramSummary | Outputs a `Summary` protocol buffer with a histogram. |
HsvToRgb<T extends TNumber> | Convert one or more images from HSV to RGB. |
Huber | Computes the Huber loss between labels and predictions. |
I
Identity<T extends TFloating> | Initializer that generates the identity matrix. |
Identity<T extends TType> | Return a tensor with the same shape and contents as the input tensor or value. |
IdentityN | Returns a list of tensors with the same shapes and contents as the input
tensors. |
IdentityReader | A Reader that outputs the queued work as both the key and value. |
IdentityReader.Options | Optional attributes for IdentityReader
|
Ifft<T extends TType> | Inverse fast Fourier transform. |
Ifft2d<T extends TType> | Inverse 2D fast Fourier transform. |
Ifft3d<T extends TType> | Inverse 3D fast Fourier transform. |
Igamma<T extends TNumber> | Compute the lower regularized incomplete Gamma function `P(a, x)`. |
Igammac<T extends TNumber> | Compute the upper regularized incomplete Gamma function `Q(a, x)`. |
IgammaGradA<T extends TNumber> | Computes the gradient of `igamma(a, x)` wrt `a`. |
IgnoreErrorsDataset | Creates a dataset that contains the elements of `input_dataset` ignoring errors. |
IgnoreErrorsDataset | Creates a dataset that contains the elements of `input_dataset` ignoring errors. |
IgnoreErrorsDataset.Options | Optional attributes for IgnoreErrorsDataset
|
IgnoreErrorsDataset.Options | Optional attributes for IgnoreErrorsDataset
|
IllegalRankException | Exception thrown when an operation cannot be completed because of the rank of the targeted array. |
Imag<U extends TNumber> | Returns the imaginary part of a complex number. |
ImageProjectiveTransformV2<T extends TNumber> | Applies the given transform to each of the images. |
ImageProjectiveTransformV2.Options | Optional attributes for ImageProjectiveTransformV2
|
ImageProjectiveTransformV3<T extends TNumber> | Applies the given transform to each of the images. |
ImageProjectiveTransformV3.Options | Optional attributes for ImageProjectiveTransformV3
|
ImageSummary | Outputs a `Summary` protocol buffer with images. |
ImageSummary.Options | Optional attributes for ImageSummary
|
ImmutableConst<T extends TType> | Returns immutable tensor from memory region. |
ImportEvent | |
Index | An index used for slicing a view out of an N-dimensional array. |
IndexedPositionIterator | |
IndexedPositionIterator.CoordsLongConsumer | |
Indices | Helper class for instantiating Index objects. |
InfeedDequeue<T extends TType> | A placeholder op for a value that will be fed into the computation. |
InfeedDequeueTuple | Fetches multiple values from infeed as an XLA tuple. |
InfeedEnqueue | An op which feeds a single Tensor value into the computation. |
InfeedEnqueue.Options | Optional attributes for InfeedEnqueue
|
InfeedEnqueuePrelinearizedBuffer | An op which enqueues prelinearized buffer into TPU infeed. |
InfeedEnqueuePrelinearizedBuffer.Options | Optional attributes for InfeedEnqueuePrelinearizedBuffer
|
InfeedEnqueueTuple | Feeds multiple Tensor values into the computation as an XLA tuple. |
InfeedEnqueueTuple.Options | Optional attributes for InfeedEnqueueTuple
|
Init | |
Initializer<T extends TType> | An interface for Initializers |
InitializeTable | Table initializer that takes two tensors for keys and values respectively. |
InitializeTableFromDataset | |
InitializeTableFromTextFile | Initializes a table from a text file. |
InitializeTableFromTextFile.Options | Optional attributes for InitializeTableFromTextFile
|
InplaceAdd<T extends TType> | Adds v into specified rows of x. |
InplaceSub<T extends TType> | Subtracts `v` into specified rows of `x`. |
InplaceUpdate<T extends TType> | Updates specified rows 'i' with values 'v'. |
Int64List | Protobuf type tensorflow.Int64List
|
Int64List.Builder | Protobuf type tensorflow.Int64List
|
Int64ListOrBuilder | |
IntDataBuffer | A DataBuffer of ints. |
IntDataLayout<S extends DataBuffer<?>> | A DataLayout that converts data stored in a buffer to ints. |
IntDenseNdArray | |
InterconnectLink | Protobuf type tensorflow.InterconnectLink
|
InterconnectLink.Builder | Protobuf type tensorflow.InterconnectLink
|
InterconnectLinkOrBuilder | |
IntNdArray | An NdArray of integers. |
InTopK | Says whether the targets are in the top `K` predictions. |
Inv<T extends TType> | Computes the inverse of one or more square invertible matrices or their adjoints (conjugate transposes). |
Inv.Options | Optional attributes for Inv
|
Invert<T extends TNumber> | Invert (flip) each bit of supported types; for example, type `uint8` value 01010101 becomes 10101010. |
InvertPermutation<T extends TNumber> | Computes the inverse permutation of a tensor. |
InvGrad<T extends TType> | Computes the gradient for the inverse of `x` wrt its input. |
Irfft<U extends TNumber> | Inverse real-valued fast Fourier transform. |
Irfft2d<U extends TNumber> | Inverse 2D real-valued fast Fourier transform. |
Irfft3d<U extends TNumber> | Inverse 3D real-valued fast Fourier transform. |
IsBoostedTreesEnsembleInitialized | Checks whether a tree ensemble has been initialized. |
IsBoostedTreesQuantileStreamResourceInitialized | Checks whether a quantile stream has been initialized. |
IsFinite | Returns which elements of x are finite. |
IsInf | Returns which elements of x are Inf. |
IsNan | Returns which elements of x are NaN. |
IsotonicRegression<U extends TNumber> | Solves a batch of isotonic regression problems. |
IsVariableInitialized | Checks whether a tensor has been initialized. |
Iterator | |
IteratorFromStringHandle | |
IteratorFromStringHandle.Options | Optional attributes for IteratorFromStringHandle
|
IteratorGetDevice | Returns the name of the device on which `resource` has been placed. |
IteratorGetDevice | Returns the name of the device on which `resource` has been placed. |
IteratorGetNext | Gets the next output from the given iterator . |
IteratorGetNextAsOptional | Gets the next output from the given iterator as an Optional variant. |
IteratorGetNextSync | Gets the next output from the given iterator. |
IteratorToStringHandle | Converts the given `resource_handle` representing an iterator to a string. |
J
JobDef | Defines a single job in a TensorFlow cluster. |
JobDef.Builder | Defines a single job in a TensorFlow cluster. |
JobDefOrBuilder | |
JobDeviceFilters | Defines the device filters for tasks in a job. |
JobDeviceFilters.Builder | Defines the device filters for tasks in a job. |
JobDeviceFiltersOrBuilder | |
Join | Joins the strings in the given list of string tensors into one tensor;
with the given separator (default is an empty separator). |
Join.Options | Optional attributes for Join
|
K
KernelDef | Protobuf type tensorflow.KernelDef
|
KernelDef.AttrConstraint | Protobuf type tensorflow.KernelDef.AttrConstraint
|
KernelDef.AttrConstraint.Builder | Protobuf type tensorflow.KernelDef.AttrConstraint
|
KernelDef.AttrConstraintOrBuilder | |
KernelDef.Builder | Protobuf type tensorflow.KernelDef
|
KernelDefOrBuilder | |
KernelDefProtos | |
KernelList | A collection of KernelDefs tensorflow.KernelList
|
KernelList.Builder | A collection of KernelDefs tensorflow.KernelList
|
KernelListOrBuilder | |
KeyValueSort<T extends TNumber, U extends TType> | Wraps the XLA Sort operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#sort . |
KLDivergence | Computes Kullback-Leibler divergence loss between labels and predictions. |
KLDivergence<T extends TNumber> | A metric that computes the Kullback-Leibler divergence loss metric between labels and predictions. |
KMC2ChainInitialization | Returns the index of a data point that should be added to the seed set. |
KmeansPlusPlusInitialization | Selects num_to_sample rows of input using the KMeans++ criterion. |
KthOrderStatistic | Computes the Kth order statistic of a data set. |
L
L2Loss<T extends TNumber> | L2 Loss. |
LatencyStatsDataset | Records the latency of producing `input_dataset` elements in a StatsAggregator. |
LatencyStatsDataset | Records the latency of producing `input_dataset` elements in a StatsAggregator. |
LeakyRelu<T extends TNumber> | Computes rectified linear: `max(features, features * alpha)`. |
LeakyRelu.Options | Optional attributes for LeakyRelu
|
LeakyReluGrad<T extends TNumber> | Computes rectified linear gradients for a LeakyRelu operation. |
LeakyReluGrad.Options | Optional attributes for LeakyReluGrad
|
LearnedUnigramCandidateSampler | Generates labels for candidate sampling with a learned unigram distribution. |
LearnedUnigramCandidateSampler.Options | Optional attributes for LearnedUnigramCandidateSampler
|
LeCun<T extends TFloating> | LeCun normal initializer. |
LeftShift<T extends TNumber> | Elementwise computes the bitwise left-shift of `x` and `y`. |
Less | Returns the truth value of (x < y) element-wise. |
LessEqual | Returns the truth value of (x <= y) element-wise. |
Lgamma<T extends TNumber> | Computes the log of the absolute value of `Gamma(x)` element-wise. |
Linear<U extends TNumber> | Linear activation function (pass-through). |
LinSpace<T extends TNumber> | Generates values in an interval. |
Listener_BytePointer | |
Listener_String | |
ListValue | Represents a Python list. |
ListValue.Builder | Represents a Python list. |
ListValueOrBuilder | |
LMDBDataset | Creates a dataset that emits the key-value pairs in one or more LMDB files. |
LmdbDataset | |
LmdbReader | A Reader that outputs the records from a LMDB file. |
LmdbReader.Options | Optional attributes for LmdbReader
|
LoadAndRemapMatrix | Loads a 2-D (matrix) `Tensor` with name `old_tensor_name` from the checkpoint
at `ckpt_path` and potentially reorders its rows and columns using the specified remappings. |
LoadAndRemapMatrix.Options | Optional attributes for LoadAndRemapMatrix
|
LoadTPUEmbeddingAdadeltaParameters | Load Adadelta embedding parameters. |
LoadTPUEmbeddingAdadeltaParameters.Options | Optional attributes for LoadTPUEmbeddingAdadeltaParameters
|
LoadTPUEmbeddingAdadeltaParametersGradAccumDebug | Load Adadelta parameters with debug support. |
LoadTPUEmbeddingAdadeltaParametersGradAccumDebug.Options | Optional attributes for LoadTPUEmbeddingAdadeltaParametersGradAccumDebug
|
LoadTPUEmbeddingAdagradParameters | Load Adagrad embedding parameters. |
LoadTPUEmbeddingAdagradParameters.Options | Optional attributes for LoadTPUEmbeddingAdagradParameters
|
LoadTPUEmbeddingAdagradParametersGradAccumDebug | Load Adagrad embedding parameters with debug support. |
LoadTPUEmbeddingAdagradParametersGradAccumDebug.Options | Optional attributes for LoadTPUEmbeddingAdagradParametersGradAccumDebug
|
LoadTPUEmbeddingADAMParameters | Load ADAM embedding parameters. |
LoadTPUEmbeddingADAMParameters.Options | Optional attributes for LoadTPUEmbeddingADAMParameters
|
LoadTPUEmbeddingADAMParametersGradAccumDebug | Load ADAM embedding parameters with debug support. |
LoadTPUEmbeddingADAMParametersGradAccumDebug.Options | Optional attributes for LoadTPUEmbeddingADAMParametersGradAccumDebug
|
LoadTPUEmbeddingCenteredRMSPropParameters | Load centered RMSProp embedding parameters. |
LoadTPUEmbeddingCenteredRMSPropParameters.Options | Optional attributes for LoadTPUEmbeddingCenteredRMSPropParameters
|
LoadTPUEmbeddingFTRLParameters | Load FTRL embedding parameters. |
LoadTPUEmbeddingFTRLParameters.Options | Optional attributes for LoadTPUEmbeddingFTRLParameters
|
LoadTPUEmbeddingFTRLParametersGradAccumDebug | Load FTRL embedding parameters with debug support. |
LoadTPUEmbeddingFTRLParametersGradAccumDebug.Options | Optional attributes for LoadTPUEmbeddingFTRLParametersGradAccumDebug
|
LoadTPUEmbeddingMDLAdagradLightParameters | Load MDL Adagrad Light embedding parameters. |
LoadTPUEmbeddingMDLAdagradLightParameters.Options | Optional attributes for LoadTPUEmbeddingMDLAdagradLightParameters
|
LoadTPUEmbeddingMomentumParameters | Load Momentum embedding parameters. |
LoadTPUEmbeddingMomentumParameters.Options | Optional attributes for LoadTPUEmbeddingMomentumParameters
|
LoadTPUEmbeddingMomentumParametersGradAccumDebug | Load Momentum embedding parameters with debug support. |
LoadTPUEmbeddingMomentumParametersGradAccumDebug.Options | Optional attributes for LoadTPUEmbeddingMomentumParametersGradAccumDebug
|
LoadTPUEmbeddingProximalAdagradParameters | Load proximal Adagrad embedding parameters. |
LoadTPUEmbeddingProximalAdagradParameters.Options | Optional attributes for LoadTPUEmbeddingProximalAdagradParameters
|
LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug | Load proximal Adagrad embedding parameters with debug support. |
LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug.Options | Optional attributes for LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug
|
LoadTPUEmbeddingProximalYogiParameters | |
LoadTPUEmbeddingProximalYogiParameters.Options | Optional attributes for LoadTPUEmbeddingProximalYogiParameters
|
LoadTPUEmbeddingProximalYogiParametersGradAccumDebug | |
LoadTPUEmbeddingProximalYogiParametersGradAccumDebug.Options | Optional attributes for LoadTPUEmbeddingProximalYogiParametersGradAccumDebug
|
LoadTPUEmbeddingRMSPropParameters | Load RMSProp embedding parameters. |
LoadTPUEmbeddingRMSPropParameters.Options | Optional attributes for LoadTPUEmbeddingRMSPropParameters
|
LoadTPUEmbeddingRMSPropParametersGradAccumDebug | Load RMSProp embedding parameters with debug support. |
LoadTPUEmbeddingRMSPropParametersGradAccumDebug.Options | Optional attributes for LoadTPUEmbeddingRMSPropParametersGradAccumDebug
|
LoadTPUEmbeddingStochasticGradientDescentParameters | Load SGD embedding parameters. |
LoadTPUEmbeddingStochasticGradientDescentParameters.Options | Optional attributes for LoadTPUEmbeddingStochasticGradientDescentParameters
|
LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug | Load SGD embedding parameters. |
LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug.Options | Optional attributes for LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug
|
LocalLinks | Protobuf type tensorflow.LocalLinks
|
LocalLinks.Builder | Protobuf type tensorflow.LocalLinks
|
LocalLinksOrBuilder | |
LocalResponseNormalization<T extends TNumber> | Local Response Normalization. |
LocalResponseNormalization.Options | Optional attributes for LocalResponseNormalization
|
LocalResponseNormalizationGrad<T extends TNumber> | Gradients for Local Response Normalization. |
LocalResponseNormalizationGrad.Options | Optional attributes for LocalResponseNormalizationGrad
|
Log<T extends TType> | Computes natural logarithm of x element-wise. |
Log1p<T extends TType> | Computes natural logarithm of (1 + x) element-wise. |
LogCosh | Computes Computes the logarithm of the hyperbolic cosine of the prediction error. |
LogCoshError<T extends TNumber> | A metric that computes the logarithm of the hyperbolic cosine of the prediction error metric between labels and predictions. |
LogicalAnd | Returns the truth value of x AND y element-wise. |
LogicalNot | Returns the truth value of `NOT x` element-wise. |
LogicalOr | Returns the truth value of x OR y element-wise. |
LogMatrixDeterminant<T extends TType> | Computes the sign and the log of the absolute value of the determinant of
one or more square matrices. |
LogMemoryProtos | |
LogMessage | Protocol buffer used for logging messages to the events file. |
LogMessage.Builder | Protocol buffer used for logging messages to the events file. |
LogMessage.Level | Protobuf enum tensorflow.LogMessage.Level
|
LogMessageOrBuilder | |
LogSoftmax<T extends TNumber> | Computes log softmax activations. |
LogUniformCandidateSampler | Generates labels for candidate sampling with a log-uniform distribution. |
LogUniformCandidateSampler.Options | Optional attributes for LogUniformCandidateSampler
|
LongDataBuffer | A DataBuffer of longs. |
LongDataLayout<S extends DataBuffer<?>> | A DataLayout that converts data stored in a buffer to longs. |
LongDenseNdArray | |
LongNdArray | An NdArray of longs. |
LookupTableExport<T extends TType, U extends TType> | Outputs all keys and values in the table. |
LookupTableFind<U extends TType> | Looks up keys in a table, outputs the corresponding values. |
LookupTableImport | Replaces the contents of the table with the specified keys and values. |
LookupTableInsert | Updates the table to associates keys with values. |
LookupTableRemove | Removes keys and its associated values from a table. |
LookupTableSize | Computes the number of elements in the given table. |
LoopCond | Forwards the input to the output. |
Loss | |
Losses | Built-in loss functions. |
LossesHelper | These are helper methods for Losses and Metrics and will be module private when Java modularity is applied to TensorFlow Java. |
LossMetric<T extends TNumber> | Interface for Metrics that wrap Loss functions. |
LossTuple<T extends TNumber> | A helper class for loss methods to return labels, target, and sampleWeights |
Lower | Converts all uppercase characters into their respective lowercase replacements. |
Lower.Options | Optional attributes for Lower
|
LowerBound<U extends TNumber> | Applies lower_bound(sorted_search_values, values) along each row. |
LSTMBlockCell<T extends TNumber> | Computes the LSTM cell forward propagation for 1 time step. |
LSTMBlockCell.Options | Optional attributes for LSTMBlockCell
|
LSTMBlockCellGrad<T extends TNumber> | Computes the LSTM cell backward propagation for 1 timestep. |
Lu<T extends TType, U extends TNumber> | Computes the LU decomposition of one or more square matrices. |
M
MachineConfiguration | Protobuf type tensorflow.MachineConfiguration
|
MachineConfiguration.Builder | Protobuf type tensorflow.MachineConfiguration
|
MachineConfigurationOrBuilder | |
MakeIterator | Makes a new iterator from the given `dataset` and stores it in `iterator`. |
MakeUnique | Make all elements in the non-Batch dimension unique, but \"close\" to
their initial value. |
MapClear | Op removes all elements in the underlying container. |
MapClear.Options | Optional attributes for MapClear
|
MapDataset | |
MapIncompleteSize | Op returns the number of incomplete elements in the underlying container. |
MapIncompleteSize.Options | Optional attributes for MapIncompleteSize
|
MapIterator | |
MapOptional | |
MapPeek | Op peeks at the values at the specified key. |
MapPeek.Options | Optional attributes for MapPeek
|
MapSize | Op returns the number of elements in the underlying container. |
MapSize.Options | Optional attributes for MapSize
|
MapStage | Stage (key, values) in the underlying container which behaves like a hashtable. |
MapStage.Options | Optional attributes for MapStage
|
MapUnstage | Op removes and returns the values associated with the key
from the underlying container. |
MapUnstage.Options | Optional attributes for MapUnstage
|
MapUnstageNoKey | Op removes and returns a random (key, value)
from the underlying container. |
MapUnstageNoKey.Options | Optional attributes for MapUnstageNoKey
|
MatchingFiles | Returns the set of files matching one or more glob patterns. |
MatchingFilesDataset | |
MatchingFilesDataset | |
MatMul<T extends TType> | Multiply the matrix "a" by the matrix "b". |
MatMul.Options | Optional attributes for MatMul
|
MatrixDiag<T extends TType> | Returns a batched diagonal tensor with given batched diagonal values. |
MatrixDiagPart<T extends TType> | Returns the batched diagonal part of a batched tensor. |
MatrixDiagPartV3<T extends TType> | Returns the batched diagonal part of a batched tensor. |
MatrixDiagPartV3.Options | Optional attributes for MatrixDiagPartV3
|
MatrixDiagV3<T extends TType> | Returns a batched diagonal tensor with given batched diagonal values. |
MatrixDiagV3.Options | Optional attributes for MatrixDiagV3
|
MatrixLogarithm<T extends TType> | Computes the matrix logarithm of one or more square matrices:
\\(log(exp(A)) = A\\) This op is only defined for complex matrices. |
MatrixSetDiag<T extends TType> | Returns a batched matrix tensor with new batched diagonal values. |
MatrixSetDiag.Options | Optional attributes for MatrixSetDiag
|
MatrixSolveLs<T extends TType> | Solves one or more linear least-squares problems. |
MatrixSolveLs.Options | Optional attributes for MatrixSolveLs
|
Max<T extends TType> | Computes the maximum of elements across dimensions of a tensor. |
Max.Options | Optional attributes for Max
|
Maximum<T extends TNumber> | Returns the max of x and y (i.e. |
MaxIntraOpParallelismDataset | Creates a dataset that overrides the maximum intra-op parallelism. |
MaxIntraOpParallelismDataset | Creates a dataset that overrides the maximum intra-op parallelism. |
MaxNorm | Constrains the weights incident to each hidden unit to have a norm less than or equal to a desired value. |
MaxPool<T extends TType> | Performs max pooling on the input. |
MaxPool.Options | Optional attributes for MaxPool
|
MaxPool3d<T extends TNumber> | Performs 3D max pooling on the input. |
MaxPool3d.Options | Optional attributes for MaxPool3d
|
MaxPool3dGrad<U extends TNumber> | Computes gradients of 3D max pooling function. |
MaxPool3dGrad.Options | Optional attributes for MaxPool3dGrad
|
MaxPool3dGradGrad<T extends TNumber> | Computes second-order gradients of the maxpooling function. |
MaxPool3dGradGrad.Options | Optional attributes for MaxPool3dGradGrad
|
MaxPoolGrad<T extends TNumber> | Computes gradients of the maxpooling function. |
MaxPoolGrad.Options | Optional attributes for MaxPoolGrad
|
MaxPoolGradGrad<T extends TNumber> | Computes second-order gradients of the maxpooling function. |
MaxPoolGradGrad.Options | Optional attributes for MaxPoolGradGrad
|
MaxPoolGradGradWithArgmax<T extends TNumber> | Computes second-order gradients of the maxpooling function. |
MaxPoolGradGradWithArgmax.Options | Optional attributes for MaxPoolGradGradWithArgmax
|
MaxPoolGradWithArgmax<T extends TNumber> | Computes gradients of the maxpooling function. |
MaxPoolGradWithArgmax.Options | Optional attributes for MaxPoolGradWithArgmax
|
MaxPoolWithArgmax<T extends TNumber, U extends TNumber> | Performs max pooling on the input and outputs both max values and indices. |
MaxPoolWithArgmax.Options | Optional attributes for MaxPoolWithArgmax
|
Mean<T extends TNumber> | A metric that that implements a weighted mean WEIGHTED_MEAN |
Mean<T extends TType> | Computes the mean of elements across dimensions of a tensor. |
Mean.Options | Optional attributes for Mean
|
MeanAbsoluteError | Computes the mean of absolute difference between labels and predictions. |
MeanAbsoluteError<T extends TNumber> | A metric that computes the mean of absolute difference between labels and predictions. |
MeanAbsolutePercentageError | Computes the mean absolute percentage error between labels and predictions. |
MeanAbsolutePercentageError<T extends TNumber> | A metric that computes the mean of absolute difference between labels and predictions. |
MeanMetricWrapper<T extends TNumber> | A class that bridges a stateless loss function with the Mean metric using a reduction of
WEIGHTED_MEAN . |
MeanSquaredError | Computes the mean of squares of errors between labels and predictions. |
MeanSquaredError<T extends TNumber> | A metric that computes the mean of absolute difference between labels and predictions. |
MeanSquaredLogarithmicError | Computes the mean squared logarithmic errors between labels and predictions. |
MeanSquaredLogarithmicError<T extends TNumber> | A metric that computes the mean of absolute difference between labels and predictions. |
MemAllocatorStats | Some of the data from AllocatorStats tensorflow.MemAllocatorStats
|
MemAllocatorStats.Builder | Some of the data from AllocatorStats tensorflow.MemAllocatorStats
|
MemAllocatorStatsOrBuilder | |
MemChunk | Protobuf type tensorflow.MemChunk
|
MemChunk.Builder | Protobuf type tensorflow.MemChunk
|
MemChunkOrBuilder | |
MemmappedFileSystemDirectory | A directory of regions in a memmapped file. |
MemmappedFileSystemDirectory.Builder | A directory of regions in a memmapped file. |
MemmappedFileSystemDirectoryElement | A message that describes one region of memmapped file. |
MemmappedFileSystemDirectoryElement.Builder | A message that describes one region of memmapped file. |
MemmappedFileSystemDirectoryElementOrBuilder | |
MemmappedFileSystemDirectoryOrBuilder | |
MemmappedFileSystemProtos | |
MemoryDump | Protobuf type tensorflow.MemoryDump
|
MemoryDump.Builder | Protobuf type tensorflow.MemoryDump
|
MemoryDumpOrBuilder | |
MemoryInfo | Protobuf type tensorflow.MemoryInfo
|
MemoryInfo.Builder | Protobuf type tensorflow.MemoryInfo
|
MemoryInfoOrBuilder | |
MemoryLogRawAllocation | Protobuf type tensorflow.MemoryLogRawAllocation
|
MemoryLogRawAllocation.Builder | Protobuf type tensorflow.MemoryLogRawAllocation
|
MemoryLogRawAllocationOrBuilder | |
MemoryLogRawDeallocation | Protobuf type tensorflow.MemoryLogRawDeallocation
|
MemoryLogRawDeallocation.Builder | Protobuf type tensorflow.MemoryLogRawDeallocation
|
MemoryLogRawDeallocationOrBuilder | |
MemoryLogStep | Protobuf type tensorflow.MemoryLogStep
|
MemoryLogStep.Builder | Protobuf type tensorflow.MemoryLogStep
|
MemoryLogStepOrBuilder | |
MemoryLogTensorAllocation | Protobuf type tensorflow.MemoryLogTensorAllocation
|
MemoryLogTensorAllocation.Builder | Protobuf type tensorflow.MemoryLogTensorAllocation
|
MemoryLogTensorAllocationOrBuilder | |
MemoryLogTensorDeallocation | Protobuf type tensorflow.MemoryLogTensorDeallocation
|
MemoryLogTensorDeallocation.Builder | Protobuf type tensorflow.MemoryLogTensorDeallocation
|
MemoryLogTensorDeallocationOrBuilder | |
MemoryLogTensorOutput | Protobuf type tensorflow.MemoryLogTensorOutput
|
MemoryLogTensorOutput.Builder | Protobuf type tensorflow.MemoryLogTensorOutput
|
MemoryLogTensorOutputOrBuilder | |
MemoryStats | For memory tracking. |
MemoryStats.Builder | For memory tracking. |
MemoryStatsOrBuilder | |
Merge<T extends TType> | Forwards the value of an available tensor from `inputs` to `output`. |
MergeSummary | Merges summaries. |
MergeV2Checkpoints | V2 format specific: merges the metadata files of sharded checkpoints. |
MergeV2Checkpoints.Options | Optional attributes for MergeV2Checkpoints
|
MetaGraphDef | NOTE: This protocol buffer is evolving, and will go through revisions in the coming months. |
MetaGraphDef.Builder | NOTE: This protocol buffer is evolving, and will go through revisions in the coming months. |
MetaGraphDef.MetaInfoDef | Meta information regarding the graph to be exported. |
MetaGraphDef.MetaInfoDef.Builder | Meta information regarding the graph to be exported. |
MetaGraphDef.MetaInfoDefOrBuilder | |
MetaGraphDefOrBuilder | |
MetaGraphProtos | |
Metric<T extends TNumber> | Base class for Metrics |
MetricEntry | Protobuf type tensorflow.MetricEntry
|
MetricEntry.Builder | Protobuf type tensorflow.MetricEntry
|
MetricEntryOrBuilder | |
MetricReduction | Defines the different types of metric reductions |
Metrics | Helper class with built-in metrics functions. |
MetricsHelper | These are helper methods for Metrics and will be module private when Java modularity is applied to TensorFlow Java. |
Mfcc | Transforms a spectrogram into a form that's useful for speech recognition. |
Mfcc.Options | Optional attributes for Mfcc
|
Min<T extends TType> | Computes the minimum of elements across dimensions of a tensor. |
Min.Options | Optional attributes for Min
|
Minimum<T extends TNumber> | Returns the min of x and y (i.e. |
MinMaxNorm | Constrains the weights to have the norm between a lower bound and an upper bound. |
MirrorPad<T extends TType> | Pads a tensor with mirrored values. |
MirrorPadGrad<T extends TType> | Gradient op for `MirrorPad` op. |
MiscDataBufferFactory | Factory of miscellaneous data buffers |
MlirPassthroughOp | Wraps an arbitrary MLIR computation expressed as a module with a main() function. |
Mod<T extends TNumber> | Returns element-wise remainder of division. |
ModelDataset | Identity transformation that models performance. |
ModelDataset.Options | Optional attributes for ModelDataset
|
Momentum | Stochastic gradient descent plus momentum, either nesterov or traditional. |
Mul<T extends TType> | Returns x * y element-wise. |
MulNoNan<T extends TType> | Returns x * y element-wise. |
MultiDeviceIterator | Creates a MultiDeviceIterator resource. |
MultiDeviceIteratorFromStringHandle | Generates a MultiDeviceIterator resource from its provided string handle. |
MultiDeviceIteratorFromStringHandle.Options | Optional attributes for MultiDeviceIteratorFromStringHandle
|
MultiDeviceIteratorGetNextFromShard | Gets next element for the provided shard number. |
MultiDeviceIteratorInit | Initializes the multi device iterator with the given dataset. |
MultiDeviceIteratorToStringHandle | Produces a string handle for the given MultiDeviceIterator. |
Multinomial<U extends TNumber> | Draws samples from a multinomial distribution. |
Multinomial.Options | Optional attributes for Multinomial
|
MutableDenseHashTable | Creates an empty hash table that uses tensors as the backing store. |
MutableDenseHashTable.Options | Optional attributes for MutableDenseHashTable
|
MutableHashTable | Creates an empty hash table. |
MutableHashTable.Options | Optional attributes for MutableHashTable
|
MutableHashTableOfTensors | Creates an empty hash table. |
MutableHashTableOfTensors.Options | Optional attributes for MutableHashTableOfTensors
|
Mutex | Creates a Mutex resource that can be locked by `MutexLock`. |
Mutex.Options | Optional attributes for Mutex
|
MutexLock | Locks a mutex resource. |
N
Nadam | Nadam Optimizer that implements the NAdam algorithm. |
NameAttrList | A list of attr names and their values. |
NameAttrList.Builder | A list of attr names and their values. |
NameAttrListOrBuilder | |
NamedDevice | Protobuf type tensorflow.NamedDevice
|
NamedDevice.Builder | Protobuf type tensorflow.NamedDevice
|
NamedDeviceOrBuilder | |
NamedTensorProto | A pair of tensor name and tensor values. |
NamedTensorProto.Builder | A pair of tensor name and tensor values. |
NamedTensorProtoOrBuilder | |
NamedTensorProtos | |
NamedTupleValue | Represents Python's namedtuple. |
NamedTupleValue.Builder | Represents Python's namedtuple. |
NamedTupleValueOrBuilder | |
NcclAllReduce<T extends TNumber> | Outputs a tensor containing the reduction across all input tensors. |
NcclAllReduce<T extends TNumber> | Outputs a tensor containing the reduction across all input tensors. |
NcclBroadcast<T extends TNumber> | Sends `input` to all devices that are connected to the output. |
NcclBroadcast<T extends TNumber> | Sends `input` to all devices that are connected to the output. |
NcclReduce<T extends TNumber> | Reduces `input` from `num_devices` using `reduction` to a single device. |
NcclReduce<T extends TNumber> | Reduces `input` from `num_devices` using `reduction` to a single device. |
NdArray<T> | A data structure of N-dimensions. |
NdArrays | Utility class for instantiating NdArray objects. |
NdArraySequence<T extends NdArray<?>> | A sequence of elements of an N-dimensional array. |
Ndtri<T extends TNumber> | |
NearestNeighbors | Selects the k nearest centers for each point. |
Neg<T extends TType> | Computes numerical negative value element-wise. |
NegTrain | Training via negative sampling. |
NextAfter<T extends TNumber> | Returns the next representable value of `x1` in the direction of `x2`, element-wise. |
NextIteration<T extends TType> | Makes its input available to the next iteration. |
NioDataBufferFactory | Factory of JDK NIO-based data buffers |
NodeDef | Protobuf type tensorflow.NodeDef
|
NodeDef.Builder | Protobuf type tensorflow.NodeDef
|
NodeDef.ExperimentalDebugInfo | Protobuf type tensorflow.NodeDef.ExperimentalDebugInfo
|
NodeDef.ExperimentalDebugInfo.Builder | Protobuf type tensorflow.NodeDef.ExperimentalDebugInfo
|
NodeDef.ExperimentalDebugInfoOrBuilder | |
NodeDefOrBuilder | |
NodeExecStats | Time/size stats recorded for a single execution of a graph node. |
NodeExecStats.Builder | Time/size stats recorded for a single execution of a graph node. |
NodeExecStatsOrBuilder | |
NodeOutput | Output sizes recorded for a single execution of a graph node. |
NodeOutput.Builder | Output sizes recorded for a single execution of a graph node. |
NodeOutputOrBuilder | |
NodeProto | |
NonDeterministicInts<U extends TType> | Non-deterministically generates some integers. |
NoneValue | Represents None. |
NoneValue.Builder | Represents None. |
NoneValueOrBuilder | |
NonMaxSuppression<T extends TNumber> | Greedily selects a subset of bounding boxes in descending order of score,
pruning away boxes that have high intersection-over-union (IOU) overlap with previously selected boxes. |
NonMaxSuppression.Options | Optional attributes for NonMaxSuppression
|
NonMaxSuppressionWithOverlaps | Greedily selects a subset of bounding boxes in descending order of score,
pruning away boxes that have high overlaps with previously selected boxes. |
NonNeg | Constrains the weights to be non-negative. |
NonSerializableDataset | |
NonSerializableDataset | |
NoOp | Does nothing. |
NotBroadcastableException | Exception that indicates that static shapes are not able to broadcast among each other during arithmetic operations. |
NotEqual | Returns the truth value of (x != y) element-wise. |
NotEqual.Options | Optional attributes for NotEqual
|
NthElement<T extends TNumber> | Finds values of the `n`-th order statistic for the last dimension. |
NthElement.Options | Optional attributes for NthElement
|
O
OneHot<U extends TType> | Returns a one-hot tensor. |
OneHot.Options | Optional attributes for OneHot
|
Ones<T extends TType> | Initializer that generates tensors initialized to 1. |
Ones<T extends TType> | An operator creating a constant initialized with ones of the shape given by `dims`. |
OnesLike<T extends TType> | Returns a tensor of ones with the same shape and type as x. |
Op | A logical unit of computation. |
OpDef | Defines an operation. |
OpDef.ArgDef | For describing inputs and outputs. |
OpDef.ArgDef.Builder | For describing inputs and outputs. |
OpDef.ArgDefOrBuilder | |
OpDef.AttrDef | Description of the graph-construction-time configuration of this Op. |
OpDef.AttrDef.Builder | Description of the graph-construction-time configuration of this Op. |
OpDef.AttrDefOrBuilder | |
OpDef.Builder | Defines an operation. |
OpDefOrBuilder | |
OpDefProtos | |
OpDeprecation | Information about version-dependent deprecation of an op tensorflow.OpDeprecation
|
OpDeprecation.Builder | Information about version-dependent deprecation of an op tensorflow.OpDeprecation
|
OpDeprecationOrBuilder | |
Operand<T extends TType> | Interface implemented by operands of a TensorFlow operation. |
Operands | Utilities for manipulating operand related types and lists. |
Operation | Performs computation on Tensors. |
OperationBuilder | A builder for Operation s. |
Operator | Annotation used by classes to make TensorFlow operations conveniently accessible via org.tensorflow.op.Ops or one of its groups. |
OpList | A collection of OpDefs tensorflow.OpList
|
OpList.Builder | A collection of OpDefs tensorflow.OpList
|
OpListOrBuilder | |
OptimizeDataset | Creates a dataset by applying optimizations to `input_dataset`. |
OptimizeDataset.Options | Optional attributes for OptimizeDataset
|
OptimizeDatasetV2 | Creates a dataset by applying related optimizations to `input_dataset`. |
OptimizeDatasetV2.Options | Optional attributes for OptimizeDatasetV2
|
Optimizer | Base class for gradient optimizers. |
Optimizer.GradAndVar<T extends TType> | A class that holds a paired gradient and variable. |
Optimizer.Options | Optional attributes for Optimizer |
OptimizerOptions | Options passed to the graph optimizer tensorflow.OptimizerOptions
|
OptimizerOptions.Builder | Options passed to the graph optimizer tensorflow.OptimizerOptions
|
OptimizerOptions.GlobalJitLevel | Control the use of the compiler/jit. |
OptimizerOptions.Level | Optimization level tensorflow.OptimizerOptions.Level
|
OptimizerOptionsOrBuilder | |
Optimizers | Enumerator used to create a new Optimizer with default parameters. |
OptionalFromValue | Constructs an Optional variant from a tuple of tensors. |
OptionalGetValue | Returns the value stored in an Optional variant or raises an error if none exists. |
OptionalHasValue | Returns true if and only if the given Optional variant has a value. |
OptionalNone | Creates an Optional variant with no value. |
OrderedMapClear | Op removes all elements in the underlying container. |
OrderedMapClear.Options | Optional attributes for OrderedMapClear
|
OrderedMapIncompleteSize | Op returns the number of incomplete elements in the underlying container. |
OrderedMapIncompleteSize.Options | Optional attributes for OrderedMapIncompleteSize
|
OrderedMapPeek | Op peeks at the values at the specified key. |
OrderedMapPeek.Options | Optional attributes for OrderedMapPeek
|
OrderedMapSize | Op returns the number of elements in the underlying container. |
OrderedMapSize.Options | Optional attributes for OrderedMapSize
|
OrderedMapStage | Stage (key, values) in the underlying container which behaves like a ordered
associative container. |
OrderedMapStage.Options | Optional attributes for OrderedMapStage
|
OrderedMapUnstage | Op removes and returns the values associated with the key
from the underlying container. |
OrderedMapUnstage.Options | Optional attributes for OrderedMapUnstage
|
OrderedMapUnstageNoKey | Op removes and returns the (key, value) element with the smallest
key from the underlying container. |
OrderedMapUnstageNoKey.Options | Optional attributes for OrderedMapUnstageNoKey
|
OrdinalSelector | A TPU core selector Op. |
Orthogonal<T extends TFloating> | Initializer that generates an orthogonal matrix. |
OutfeedDequeue<T extends TType> | Retrieves a single tensor from the computation outfeed. |
OutfeedDequeue.Options | Optional attributes for OutfeedDequeue
|
OutfeedDequeueTuple | Retrieve multiple values from the computation outfeed. |
OutfeedDequeueTuple.Options | Optional attributes for OutfeedDequeueTuple
|
OutfeedDequeueTupleV2 | Retrieve multiple values from the computation outfeed. |
OutfeedDequeueV2<T extends TType> | Retrieves a single tensor from the computation outfeed. |
OutfeedEnqueue | Enqueue a Tensor on the computation outfeed. |
OutfeedEnqueueTuple | Enqueue multiple Tensor values on the computation outfeed. |
Output<T extends TType> | A symbolic handle to a tensor produced by an Operation . |
P
Pad<T extends TType> | Pads a tensor. |
Pad<T extends TType> | Wraps the XLA Pad operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#pad . |
PaddedBatchDataset | Creates a dataset that batches and pads `batch_size` elements from the input. |
PaddedBatchDataset.Options | Optional attributes for PaddedBatchDataset
|
PaddingFifoQueue | A queue that produces elements in first-in first-out order. |
PaddingFifoQueue.Options | Optional attributes for PaddingFifoQueue
|
PairValue | Represents a (key, value) pair. |
PairValue.Builder | Represents a (key, value) pair. |
PairValueOrBuilder | |
ParallelConcat<T extends TType> | Concatenates a list of `N` tensors along the first dimension. |
ParallelDynamicStitch<T extends TType> | Interleave the values from the `data` tensors into a single tensor. |
ParameterizedTruncatedNormal<U extends TNumber> | Outputs random values from a normal distribution. |
ParameterizedTruncatedNormal.Options | Optional attributes for ParameterizedTruncatedNormal
|
ParseExample | Transforms a vector of tf.Example protos (as strings) into typed tensors. |
ParseExampleDataset | Transforms `input_dataset` containing `Example` protos as vectors of DT_STRING into a dataset of `Tensor` or `SparseTensor` objects representing the parsed features. |
ParseExampleDataset.Options | Optional attributes for ParseExampleDataset
|
ParseSequenceExample | Transforms a vector of tf.io.SequenceExample protos (as strings) into typed tensors. |
ParseSequenceExample.Options | Optional attributes for ParseSequenceExample
|
ParseSingleExample | Transforms a tf.Example proto (as a string) into typed tensors. |
ParseSingleSequenceExample | Transforms a scalar brain.SequenceExample proto (as strings) into typed tensors. |
ParseSingleSequenceExample.Options | Optional attributes for ParseSingleSequenceExample
|
ParseTensor<T extends TType> | Transforms a serialized tensorflow.TensorProto proto into a Tensor. |
PartitionedInput<T extends TType> | An op that groups a list of partitioned inputs together. |
PartitionedInput.Options | Optional attributes for PartitionedInput
|
PartitionedOutput<T extends TType> | An op that demultiplexes a tensor to be sharded by XLA to a list of partitioned
outputs outside the XLA computation. |
PartitionedOutput.Options | Optional attributes for PartitionedOutput
|
Placeholder<T extends TType> | A placeholder op for a value that will be fed into the computation. |
Placeholder.Options | Optional attributes for Placeholder
|
PlaceholderWithDefault<T extends TType> | A placeholder op that passes through `input` when its output is not fed. |
PlatformInfo | Protobuf type tensorflow.PlatformInfo
|
PlatformInfo.Builder | Protobuf type tensorflow.PlatformInfo
|
PlatformInfoOrBuilder | |
Poisson | Computes the Poisson loss between labels and predictions. |
Poisson<T extends TNumber> | A metric that computes the poisson loss metric between labels and predictions. |
Polygamma<T extends TNumber> | Compute the polygamma function \\(\psi^{(n)}(x)\\). |
PopulationCount | Computes element-wise population count (a.k.a. |
PositionIterator | |
Pow<T extends TType> | Computes the power of one value to another. |
PrefetchDataset | Creates a dataset that asynchronously prefetches elements from `input_dataset`. |
PrefetchDataset.Options | Optional attributes for PrefetchDataset
|
Prelinearize | An op which linearizes one Tensor value to an opaque variant tensor. |
Prelinearize.Options | Optional attributes for Prelinearize
|
PrelinearizeTuple | An op which linearizes multiple Tensor values to an opaque variant tensor. |
PrelinearizeTuple.Options | Optional attributes for PrelinearizeTuple
|
PreventGradient<T extends TType> | An identity op that triggers an error if a gradient is requested. |
PreventGradient.Options | Optional attributes for PreventGradient
|
Prints a string scalar. | |
Print.Options | Optional attributes for Print
|
PriorityQueue | A queue that produces elements sorted by the first component value. |
PriorityQueue.Options | Optional attributes for PriorityQueue
|
PrivateThreadPoolDataset | Creates a dataset that uses a custom thread pool to compute `input_dataset`. |
PrivateThreadPoolDataset | Creates a dataset that uses a custom thread pool to compute `input_dataset`. |
Prod<T extends TType> | Computes the product of elements across dimensions of a tensor. |
Prod.Options | Optional attributes for Prod
|
ProfileOptions | Next ID: 11 tensorflow.ProfileOptions
|
ProfileOptions.Builder | Next ID: 11 tensorflow.ProfileOptions
|
ProfileOptions.DeviceType | Protobuf enum tensorflow.ProfileOptions.DeviceType
|
ProfileOptionsOrBuilder | |
ProfilerOptionsProtos |
Q
Qr<T extends TType> | Computes the QR decompositions of one or more matrices. |
Qr.Options | Optional attributes for Qr
|
Quantize<T extends TType> | Quantize the 'input' tensor of type float to 'output' tensor of type 'T'. |
Quantize.Options | Optional attributes for Quantize
|
QuantizeAndDequantize<T extends TNumber> | Quantizes then dequantizes a tensor. |
QuantizeAndDequantize.Options | Optional attributes for QuantizeAndDequantize
|
QuantizeAndDequantizeV3<T extends TNumber> | Quantizes then dequantizes a tensor. |
QuantizeAndDequantizeV3.Options | Optional attributes for QuantizeAndDequantizeV3
|
QuantizeAndDequantizeV4<T extends TNumber> | Returns the gradient of `quantization.QuantizeAndDequantizeV4`. |
QuantizeAndDequantizeV4.Options | Optional attributes for QuantizeAndDequantizeV4
|
QuantizeAndDequantizeV4Grad<T extends TNumber> | Returns the gradient of `QuantizeAndDequantizeV4`. |
QuantizeAndDequantizeV4Grad.Options | Optional attributes for QuantizeAndDequantizeV4Grad
|
QuantizedAdd<V extends TType> | Returns x + y element-wise, working on quantized buffers. |
QuantizedAvgPool<T extends TType> | Produces the average pool of the input tensor for quantized types. |
QuantizedBatchNormWithGlobalNormalization<U extends TType> | Quantized Batch normalization. |
QuantizedBiasAdd<V extends TType> | Adds Tensor 'bias' to Tensor 'input' for Quantized types. |
QuantizedConcat<T extends TType> | Concatenates quantized tensors along one dimension. |
QuantizedConv2d<V extends TType> | Computes a 2D convolution given quantized 4D input and filter tensors. |
QuantizedConv2d.Options | Optional attributes for QuantizedConv2d
|
QuantizedConv2DAndRelu<V extends TType> | |
QuantizedConv2DAndRelu.Options | Optional attributes for QuantizedConv2DAndRelu
|
QuantizedConv2DAndReluAndRequantize<V extends TType> | |
QuantizedConv2DAndReluAndRequantize.Options | Optional attributes for QuantizedConv2DAndReluAndRequantize
|
QuantizedConv2DAndRequantize<V extends TType> | |
QuantizedConv2DAndRequantize.Options | Optional attributes for QuantizedConv2DAndRequantize
|
QuantizedConv2DPerChannel<V extends TType> | Computes QuantizedConv2D per channel. |
QuantizedConv2DPerChannel.Options | Optional attributes for QuantizedConv2DPerChannel
|
QuantizedConv2DWithBias<V extends TType> | |
QuantizedConv2DWithBias.Options | Optional attributes for QuantizedConv2DWithBias
|
QuantizedConv2DWithBiasAndRelu<V extends TType> | |
QuantizedConv2DWithBiasAndRelu.Options | Optional attributes for QuantizedConv2DWithBiasAndRelu
|
QuantizedConv2DWithBiasAndReluAndRequantize<W extends TType> | |
QuantizedConv2DWithBiasAndReluAndRequantize.Options | Optional attributes for QuantizedConv2DWithBiasAndReluAndRequantize
|
QuantizedConv2DWithBiasAndRequantize<W extends TType> | |
QuantizedConv2DWithBiasAndRequantize.Options | Optional attributes for QuantizedConv2DWithBiasAndRequantize
|
QuantizedConv2DWithBiasSignedSumAndReluAndRequantize<X extends TType> | |
QuantizedConv2DWithBiasSignedSumAndReluAndRequantize.Options | Optional attributes for QuantizedConv2DWithBiasSignedSumAndReluAndRequantize
|
QuantizedConv2DWithBiasSumAndRelu<V extends TType> | |
QuantizedConv2DWithBiasSumAndRelu.Options | Optional attributes for QuantizedConv2DWithBiasSumAndRelu
|
QuantizedConv2DWithBiasSumAndReluAndRequantize<X extends TType> | |
QuantizedConv2DWithBiasSumAndReluAndRequantize.Options | Optional attributes for QuantizedConv2DWithBiasSumAndReluAndRequantize
|
QuantizedDepthwiseConv2D<V extends TType> | Computes quantized depthwise Conv2D. |
QuantizedDepthwiseConv2D.Options | Optional attributes for QuantizedDepthwiseConv2D
|
QuantizedDepthwiseConv2DWithBias<V extends TType> | Computes quantized depthwise Conv2D with Bias. |
QuantizedDepthwiseConv2DWithBias.Options | Optional attributes for QuantizedDepthwiseConv2DWithBias
|
QuantizedDepthwiseConv2DWithBiasAndRelu<V extends TType> | Computes quantized depthwise Conv2D with Bias and Relu. |
QuantizedDepthwiseConv2DWithBiasAndRelu.Options | Optional attributes for QuantizedDepthwiseConv2DWithBiasAndRelu
|
QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize<W extends TType> | Computes quantized depthwise Conv2D with Bias, Relu and Requantize. |
QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize.Options | Optional attributes for QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize
|
QuantizedInstanceNorm<T extends TType> | Quantized Instance normalization. |
QuantizedInstanceNorm.Options | Optional attributes for QuantizedInstanceNorm
|
QuantizedMatMul<V extends TType> | Perform a quantized matrix multiplication of `a` by the matrix `b`. |
QuantizedMatMul.Options | Optional attributes for QuantizedMatMul
|
QuantizedMatMulWithBias<W extends TType> | Performs a quantized matrix multiplication of `a` by the matrix `b` with bias add. |
QuantizedMatMulWithBias.Options | Optional attributes for QuantizedMatMulWithBias
|
QuantizedMatMulWithBiasAndDequantize<W extends TNumber> | |
QuantizedMatMulWithBiasAndDequantize.Options | Optional attributes for QuantizedMatMulWithBiasAndDequantize
|
QuantizedMatMulWithBiasAndRelu<V extends TType> | Perform a quantized matrix multiplication of `a` by the matrix `b` with bias add and relu fusion. |
QuantizedMatMulWithBiasAndRelu.Options | Optional attributes for QuantizedMatMulWithBiasAndRelu
|
QuantizedMatMulWithBiasAndReluAndRequantize<W extends TType> | Perform a quantized matrix multiplication of `a` by the matrix `b` with bias add and relu and requantize fusion. |
QuantizedMatMulWithBiasAndReluAndRequantize.Options | Optional attributes for QuantizedMatMulWithBiasAndReluAndRequantize
|
QuantizedMatMulWithBiasAndRequantize<W extends TType> | |
QuantizedMatMulWithBiasAndRequantize.Options | Optional attributes for QuantizedMatMulWithBiasAndRequantize
|
QuantizedMaxPool<T extends TType> | Produces the max pool of the input tensor for quantized types. |
QuantizedMul<V extends TType> | Returns x * y element-wise, working on quantized buffers. |
QuantizeDownAndShrinkRange<U extends TType> | Convert the quantized 'input' tensor into a lower-precision 'output', using the
actual distribution of the values to maximize the usage of the lower bit depth and adjusting the output min and max ranges accordingly. |
QuantizedRelu<U extends TType> | Computes Quantized Rectified Linear: `max(features, 0)` |
QuantizedRelu6<U extends TType> | Computes Quantized Rectified Linear 6: `min(max(features, 0), 6)` |
QuantizedReluX<U extends TType> | Computes Quantized Rectified Linear X: `min(max(features, 0), max_value)` |
QuantizedReshape<T extends TType> | Reshapes a quantized tensor as per the Reshape op. |
QuantizedResizeBilinear<T extends TType> | Resize quantized `images` to `size` using quantized bilinear interpolation. |
QuantizedResizeBilinear.Options | Optional attributes for QuantizedResizeBilinear
|
QueueClose | Closes the given queue. |
QueueClose.Options | Optional attributes for QueueClose
|
QueueDequeue | Dequeues a tuple of one or more tensors from the given queue. |
QueueDequeue.Options | Optional attributes for QueueDequeue
|
QueueDequeueMany | Dequeues `n` tuples of one or more tensors from the given queue. |
QueueDequeueMany.Options | Optional attributes for QueueDequeueMany
|
QueueDequeueUpTo | Dequeues `n` tuples of one or more tensors from the given queue. |
QueueDequeueUpTo.Options | Optional attributes for QueueDequeueUpTo
|
QueueEnqueue | Enqueues a tuple of one or more tensors in the given queue. |
QueueEnqueue.Options | Optional attributes for QueueEnqueue
|
QueueEnqueueMany | Enqueues zero or more tuples of one or more tensors in the given queue. |
QueueEnqueueMany.Options | Optional attributes for QueueEnqueueMany
|
QueueIsClosed | Returns true if queue is closed. |
QueueRunnerDef | Protocol buffer representing a QueueRunner. |
QueueRunnerDef.Builder | Protocol buffer representing a QueueRunner. |
QueueRunnerDefOrBuilder | |
QueueRunnerProtos | |
QueueSize | Computes the number of elements in the given queue. |
R
RaggedBincount<U extends TNumber> | Counts the number of occurrences of each value in an integer array. |
RaggedBincount.Options | Optional attributes for RaggedBincount
|
RaggedCountSparseOutput<U extends TNumber> | Performs sparse-output bin counting for a ragged tensor input. |
RaggedCountSparseOutput.Options | Optional attributes for RaggedCountSparseOutput
|
RaggedCross<T extends TType, U extends TNumber> | Generates a feature cross from a list of tensors, and returns it as a RaggedTensor. |
RaggedGather<T extends TNumber, U extends TType> | Gather ragged slices from `params` axis `0` according to `indices`. |
RaggedRange<U extends TNumber, T extends TNumber> | Returns a `RaggedTensor` containing the specified sequences of numbers. |
RaggedTensorFromVariant<U extends TNumber, T extends TType> | Decodes a `variant` Tensor into a `RaggedTensor`. |
RaggedTensorToSparse<U extends TType> | Converts a `RaggedTensor` into a `SparseTensor` with the same values. |
RaggedTensorToTensor<U extends TType> | Create a dense tensor from a ragged tensor, possibly altering its shape. |
RaggedTensorToVariant | Encodes a `RaggedTensor` into a `variant` Tensor. |
RaggedTensorToVariantGradient<U extends TType> | Helper used to compute the gradient for `RaggedTensorToVariant`. |
RandomCrop<T extends TNumber> | Randomly crop `image`. |
RandomCrop.Options | Optional attributes for RandomCrop
|
RandomDataset | Creates a Dataset that returns pseudorandom numbers. |
RandomDataset | Creates a Dataset that returns pseudorandom numbers. |
RandomGamma<U extends TNumber> | Outputs random values from the Gamma distribution(s) described by alpha. |
RandomGamma.Options | Optional attributes for RandomGamma
|
RandomGammaGrad<T extends TNumber> | Computes the derivative of a Gamma random sample w.r.t. |
RandomNormal<T extends TFloating> | Initializer that generates tensors with a normal distribution. |
RandomPoisson<V extends TNumber> | Outputs random values from the Poisson distribution(s) described by rate. |
RandomPoisson.Options | Optional attributes for RandomPoisson
|
RandomShuffle<T extends TType> | Randomly shuffles a tensor along its first dimension. |
RandomShuffle.Options | Optional attributes for RandomShuffle
|
RandomShuffleQueue | A queue that randomizes the order of elements. |
RandomShuffleQueue.Options | Optional attributes for RandomShuffleQueue
|
RandomStandardNormal<U extends TNumber> | Outputs random values from a normal distribution. |
RandomStandardNormal.Options | Optional attributes for RandomStandardNormal
|
RandomUniform<T extends TNumber> | Initializer that generates tensors with a uniform distribution. |
RandomUniform<U extends TNumber> | Outputs random values from a uniform distribution. |
RandomUniform.Options | Optional attributes for RandomUniform
|
RandomUniformInt<U extends TNumber> | Outputs random integers from a uniform distribution. |
RandomUniformInt.Options | Optional attributes for RandomUniformInt
|
Range<T extends TNumber> | Creates a sequence of numbers. |
RangeDataset | Creates a dataset with a range of values. |
Rank | Returns the rank of a tensor. |
RawDataBufferFactory | Factory of raw data buffers |
RawOp | A base class for Op implementations that are backed by a single Operation . |
RawTensor | A tensor which memory has not been mapped to a data space directly accessible from the JVM. |
ReaderBaseProtos | |
ReaderBaseState | For serializing and restoring the state of ReaderBase, see reader_base.h for details. |
ReaderBaseState.Builder | For serializing and restoring the state of ReaderBase, see reader_base.h for details. |
ReaderBaseStateOrBuilder | |
ReaderNumRecordsProduced | Returns the number of records this Reader has produced. |
ReaderNumWorkUnitsCompleted | Returns the number of work units this Reader has finished processing. |
ReaderRead | Returns the next record (key, value pair) produced by a Reader. |
ReaderReadUpTo | Returns up to `num_records` (key, value) pairs produced by a Reader. |
ReaderReset | Restore a Reader to its initial clean state. |
ReaderRestoreState | Restore a reader to a previously saved state. |
ReaderSerializeState | Produce a string tensor that encodes the state of a Reader. |
ReadFile | Reads and outputs the entire contents of the input filename. |
ReadVariableOp<T extends TType> | Reads the value of a variable. |
Real<U extends TNumber> | Returns the real part of a complex number. |
RealDiv<T extends TType> | Returns x / y element-wise for real types. |
RebatchDataset | Creates a dataset that changes the batch size. |
RebatchDataset | Creates a dataset that changes the batch size. |
RebatchDataset.Options | Optional attributes for RebatchDataset
|
RebatchDataset.Options | Optional attributes for RebatchDataset
|
RebatchDatasetV2 | Creates a dataset that changes the batch size. |
Reciprocal<T extends TType> | Computes the reciprocal of x element-wise. |
ReciprocalGrad<T extends TType> | Computes the gradient for the inverse of `x` wrt its input. |
RecordInput | Emits randomized records. |
RecordInput.Options | Optional attributes for RecordInput
|
Recv<T extends TType> | Receives the named tensor from send_device on recv_device. |
Recv<T extends TType> | Receives the named tensor from another XLA computation. |
Recv.Options | Optional attributes for Recv
|
RecvTPUEmbeddingActivations | An op that receives embedding activations on the TPU. |
Reduce<T extends TNumber> | Encapsulates metrics that perform a reduce operation on the metric values. |
Reduce<T extends TNumber> | Mutually reduces multiple tensors of identical type and shape. |
Reduce.Options | Optional attributes for Reduce
|
ReduceAll | Computes the "logical and" of elements across dimensions of a tensor. |
ReduceAll.Options | Optional attributes for ReduceAll
|
ReduceAny | Computes the "logical or" of elements across dimensions of a tensor. |
ReduceAny.Options | Optional attributes for ReduceAny
|
ReduceJoin | Joins a string Tensor across the given dimensions. |
ReduceJoin.Options | Optional attributes for ReduceJoin
|
ReduceMax<T extends TType> | Computes the maximum of elements across dimensions of a tensor. |
ReduceMax.Options | Optional attributes for ReduceMax
|
ReduceMin<T extends TType> | Computes the minimum of elements across dimensions of a tensor. |
ReduceMin.Options | Optional attributes for ReduceMin
|
ReduceProd<T extends TType> | Computes the product of elements across dimensions of a tensor. |
ReduceProd.Options | Optional attributes for ReduceProd
|
ReduceSum<T extends TType> | Computes the sum of elements across dimensions of a tensor. |
ReduceSum.Options | Optional attributes for ReduceSum
|
ReduceV2<T extends TNumber> | Mutually reduces multiple tensors of identical type and shape. |
ReduceV2.Options | Optional attributes for ReduceV2
|
Reduction | Type of Loss Reduction
|
RefEnter<T extends TType> | Creates or finds a child frame, and makes `data` available to the child frame. |
RefEnter.Options | Optional attributes for RefEnter
|
RefExit<T extends TType> | Exits the current frame to its parent frame. |
RefIdentity<T extends TType> | Return the same ref tensor as the input ref tensor. |
RefMerge<T extends TType> | Forwards the value of an available tensor from `inputs` to `output`. |
RefNextIteration<T extends TType> | Makes its input available to the next iteration. |
RefSelect<T extends TType> | Forwards the `index`th element of `inputs` to `output`. |
RefSwitch<T extends TType> | Forwards the ref tensor `data` to the output port determined by `pred`. |
RegexFullMatch | Check if the input matches the regex pattern. |
RegexReplace | Replaces matches of the `pattern` regular expression in `input` with the replacement string provided in `rewrite`. |
RegexReplace.Options | Optional attributes for RegexReplace
|
RegisterDataset | Registers a dataset with the tf.data service. |
RelativeDimensionalSpace | |
Relu<T extends TType> | Computes rectified linear: `max(features, 0)`. |
ReLU<T extends TNumber> | Rectified Linear Unit(ReLU) activation. |
Relu6<T extends TNumber> | Computes rectified linear 6: `min(max(features, 0), 6)`. |
Relu6Grad<T extends TNumber> | Computes rectified linear 6 gradients for a Relu6 operation. |
ReluGrad<T extends TNumber> | Computes rectified linear gradients for a Relu operation. |
RemoteFusedGraphExecute | Execute a sub graph on a remote processor. |
RemoteFusedGraphExecuteInfo | Protocol buffer representing a handle to a tensorflow resource. |
RemoteFusedGraphExecuteInfo.Builder | Protocol buffer representing a handle to a tensorflow resource. |
RemoteFusedGraphExecuteInfo.TensorShapeTypeProto | Protobuf type tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto
|
RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.Builder | Protobuf type tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto
|
RemoteFusedGraphExecuteInfo.TensorShapeTypeProtoOrBuilder | |
RemoteFusedGraphExecuteInfoOrBuilder | |
RemoteFusedGraphExecuteInfoProto | |
RemoteProfilerSessionManagerOptions | Options for remote profiler session manager. |
RemoteProfilerSessionManagerOptions.Builder | Options for remote profiler session manager. |
RemoteProfilerSessionManagerOptionsOrBuilder | |
RemoteTensorHandle | Protobuf type tensorflow.eager.RemoteTensorHandle
|
RemoteTensorHandle.Builder | Protobuf type tensorflow.eager.RemoteTensorHandle
|
RemoteTensorHandleOrBuilder | |
RemoteTensorHandleProtos | |
RepeatDataset | Creates a dataset that emits the outputs of `input_dataset` `count` times. |
ReplicaId | Replica ID. |
ReplicatedInput<T extends TType> | Connects N inputs to an N-way replicated TPU computation. |
ReplicatedInput.Options | Optional attributes for ReplicatedInput
|
ReplicatedOutput<T extends TType> | Connects N outputs from an N-way replicated TPU computation. |
ReplicateMetadata | Metadata indicating how the TPU computation should be replicated. |
ReplicateMetadata.Options | Optional attributes for ReplicateMetadata
|
RequantizationRange | Computes a range that covers the actual values present in a quantized tensor. |
RequantizationRangePerChannel | Computes requantization range per channel. |
Requantize<U extends TType> | Converts the quantized `input` tensor into a lower-precision `output`. |
RequantizePerChannel<U extends TType> | Requantizes input with min and max values known per channel. |
RequestedExitCode | Protobuf type tensorflow.RequestedExitCode
|
RequestedExitCode.Builder | Protobuf type tensorflow.RequestedExitCode
|
RequestedExitCodeOrBuilder | |
Reshape<T extends TType> | Reshapes a tensor. |
ResizeArea | Resize `images` to `size` using area interpolation. |
ResizeArea.Options | Optional attributes for ResizeArea
|
ResizeBicubic | Resize `images` to `size` using bicubic interpolation. |
ResizeBicubic.Options | Optional attributes for ResizeBicubic
|
ResizeBicubicGrad<T extends TNumber> | Computes the gradient of bicubic interpolation. |
ResizeBicubicGrad.Options | Optional attributes for ResizeBicubicGrad
|
ResizeBilinear | Resize `images` to `size` using bilinear interpolation. |
ResizeBilinear.Options | Optional attributes for ResizeBilinear
|
ResizeBilinearGrad<T extends TNumber> | Computes the gradient of bilinear interpolation. |
ResizeBilinearGrad.Options | Optional attributes for ResizeBilinearGrad
|
ResizeNearestNeighbor<T extends TNumber> | Resize `images` to `size` using nearest neighbor interpolation. |
ResizeNearestNeighbor.Options | Optional attributes for ResizeNearestNeighbor
|
ResizeNearestNeighborGrad<T extends TNumber> | Computes the gradient of nearest neighbor interpolation. |
ResizeNearestNeighborGrad.Options | Optional attributes for ResizeNearestNeighborGrad
|
ResourceAccumulatorApplyGradient | Applies a gradient to a given accumulator. |
ResourceAccumulatorNumAccumulated | Returns the number of gradients aggregated in the given accumulators. |
ResourceAccumulatorSetGlobalStep | Updates the accumulator with a new value for global_step. |
ResourceAccumulatorTakeGradient<T extends TType> | Extracts the average gradient in the given ConditionalAccumulator. |
ResourceApplyAdadelta | Update '*var' according to the adadelta scheme. |
ResourceApplyAdadelta.Options | Optional attributes for ResourceApplyAdadelta
|
ResourceApplyAdagrad | Update '*var' according to the adagrad scheme. |
ResourceApplyAdagrad.Options | Optional attributes for ResourceApplyAdagrad
|
ResourceApplyAdagradDa | Update '*var' according to the proximal adagrad scheme. |
ResourceApplyAdagradDa.Options | Optional attributes for ResourceApplyAdagradDa
|
ResourceApplyAdam | Update '*var' according to the Adam algorithm. |
ResourceApplyAdam.Options | Optional attributes for ResourceApplyAdam
|
ResourceApplyAdaMax | Update '*var' according to the AdaMax algorithm. |
ResourceApplyAdaMax.Options | Optional attributes for ResourceApplyAdaMax
|
ResourceApplyAdamWithAmsgrad | Update '*var' according to the Adam algorithm. |
ResourceApplyAdamWithAmsgrad.Options | Optional attributes for ResourceApplyAdamWithAmsgrad
|
ResourceApplyAddSign | Update '*var' according to the AddSign update. |
ResourceApplyAddSign.Options | Optional attributes for ResourceApplyAddSign
|
ResourceApplyCenteredRmsProp | Update '*var' according to the centered RMSProp algorithm. |
ResourceApplyCenteredRmsProp.Options | Optional attributes for ResourceApplyCenteredRmsProp
|
ResourceApplyFtrl | Update '*var' according to the Ftrl-proximal scheme. |
ResourceApplyFtrl.Options | Optional attributes for ResourceApplyFtrl
|
ResourceApplyGradientDescent | Update '*var' by subtracting 'alpha' * 'delta' from it. |
ResourceApplyGradientDescent.Options | Optional attributes for ResourceApplyGradientDescent
|
ResourceApplyKerasMomentum | Update '*var' according to the momentum scheme. |
ResourceApplyKerasMomentum.Options | Optional attributes for ResourceApplyKerasMomentum
|
ResourceApplyMomentum | Update '*var' according to the momentum scheme. |
ResourceApplyMomentum.Options | Optional attributes for ResourceApplyMomentum
|
ResourceApplyPowerSign | Update '*var' according to the AddSign update. |
ResourceApplyPowerSign.Options | Optional attributes for ResourceApplyPowerSign
|
ResourceApplyProximalAdagrad | Update '*var' and '*accum' according to FOBOS with Adagrad learning rate. |
ResourceApplyProximalAdagrad.Options | Optional attributes for ResourceApplyProximalAdagrad
|
ResourceApplyProximalGradientDescent | Update '*var' as FOBOS algorithm with fixed learning rate. |
ResourceApplyProximalGradientDescent.Options | Optional attributes for ResourceApplyProximalGradientDescent
|
ResourceApplyRmsProp | Update '*var' according to the RMSProp algorithm. |
ResourceApplyRmsProp.Options | Optional attributes for ResourceApplyRmsProp
|
ResourceConditionalAccumulator | A conditional accumulator for aggregating gradients. |
ResourceConditionalAccumulator.Options | Optional attributes for ResourceConditionalAccumulator
|
ResourceCountUpTo<T extends TNumber> | Increments variable pointed to by 'resource' until it reaches 'limit'. |
ResourceDtypeAndShape | Protobuf type tensorflow.eager.ResourceDtypeAndShape
|
ResourceDtypeAndShape.Builder | Protobuf type tensorflow.eager.ResourceDtypeAndShape
|
ResourceDtypeAndShapeOrBuilder | |
ResourceGather<U extends TType> | Gather slices from the variable pointed to by `resource` according to `indices`. |
ResourceGather.Options | Optional attributes for ResourceGather
|
ResourceGatherNd<U extends TType> | |
ResourceHandle | |
ResourceHandleProto | Protocol buffer representing a handle to a tensorflow resource. |
ResourceHandleProto.Builder | Protocol buffer representing a handle to a tensorflow resource. |
ResourceHandleProto.DtypeAndShape | Protocol buffer representing a pair of (data type, tensor shape). |
ResourceHandleProto.DtypeAndShape.Builder | Protocol buffer representing a pair of (data type, tensor shape). |
ResourceHandleProto.DtypeAndShapeOrBuilder | |
ResourceHandleProtoOrBuilder | |
ResourceScatterAdd | Adds sparse updates to the variable referenced by `resource`. |
ResourceScatterDiv | Divides sparse updates into the variable referenced by `resource`. |
ResourceScatterMax | Reduces sparse updates into the variable referenced by `resource` using the `max` operation. |
ResourceScatterMin | Reduces sparse updates into the variable referenced by `resource` using the `min` operation. |
ResourceScatterMul | Multiplies sparse updates into the variable referenced by `resource`. |
ResourceScatterNdAdd | Applies sparse addition to individual values or slices in a Variable. |
ResourceScatterNdAdd.Options | Optional attributes for ResourceScatterNdAdd
|
ResourceScatterNdMax | |
ResourceScatterNdMax.Options | Optional attributes for ResourceScatterNdMax
|
ResourceScatterNdMin | |
ResourceScatterNdMin.Options | Optional attributes for ResourceScatterNdMin
|
ResourceScatterNdSub | Applies sparse subtraction to individual values or slices in a Variable. |
ResourceScatterNdSub.Options | Optional attributes for ResourceScatterNdSub
|
ResourceScatterNdUpdate | Applies sparse `updates` to individual values or slices within a given
variable according to `indices`. |
ResourceScatterNdUpdate.Options | Optional attributes for ResourceScatterNdUpdate
|
ResourceScatterSub | Subtracts sparse updates from the variable referenced by `resource`. |
ResourceScatterUpdate | Assigns sparse updates to the variable referenced by `resource`. |
ResourceSparseApplyAdadelta | var: Should be from a Variable(). |
ResourceSparseApplyAdadelta.Options | Optional attributes for ResourceSparseApplyAdadelta
|
ResourceSparseApplyAdagrad | Update relevant entries in '*var' and '*accum' according to the adagrad scheme. |
ResourceSparseApplyAdagrad.Options | Optional attributes for ResourceSparseApplyAdagrad
|
ResourceSparseApplyAdagradDa | Update entries in '*var' and '*accum' according to the proximal adagrad scheme. |
ResourceSparseApplyAdagradDa.Options | Optional attributes for ResourceSparseApplyAdagradDa
|
ResourceSparseApplyAdagradV2 | Update relevant entries in '*var' and '*accum' according to the adagrad scheme. |
ResourceSparseApplyAdagradV2.Options | Optional attributes for ResourceSparseApplyAdagradV2
|
ResourceSparseApplyCenteredRmsProp | Update '*var' according to the centered RMSProp algorithm. |
ResourceSparseApplyCenteredRmsProp.Options | Optional attributes for ResourceSparseApplyCenteredRmsProp
|
ResourceSparseApplyFtrl | Update relevant entries in '*var' according to the Ftrl-proximal scheme. |
ResourceSparseApplyFtrl.Options | Optional attributes for ResourceSparseApplyFtrl
|
ResourceSparseApplyKerasMomentum | Update relevant entries in '*var' and '*accum' according to the momentum scheme. |
ResourceSparseApplyKerasMomentum.Options | Optional attributes for ResourceSparseApplyKerasMomentum
|
ResourceSparseApplyMomentum | Update relevant entries in '*var' and '*accum' according to the momentum scheme. |
ResourceSparseApplyMomentum.Options | Optional attributes for ResourceSparseApplyMomentum
|
ResourceSparseApplyProximalAdagrad | Sparse update entries in '*var' and '*accum' according to FOBOS algorithm. |
ResourceSparseApplyProximalAdagrad.Options | Optional attributes for ResourceSparseApplyProximalAdagrad
|
ResourceSparseApplyProximalGradientDescent | Sparse update '*var' as FOBOS algorithm with fixed learning rate. |
ResourceSparseApplyProximalGradientDescent.Options | Optional attributes for ResourceSparseApplyProximalGradientDescent
|
ResourceSparseApplyRmsProp | Update '*var' according to the RMSProp algorithm. |
ResourceSparseApplyRmsProp.Options | Optional attributes for ResourceSparseApplyRmsProp
|
ResourceStridedSliceAssign | Assign `value` to the sliced l-value reference of `ref`. |
ResourceStridedSliceAssign.Options | Optional attributes for ResourceStridedSliceAssign
|
Restore | Restores tensors from a V2 checkpoint. |
RestoreSlice<T extends TType> | Restores a tensor from checkpoint files. |
RestoreSlice.Options | Optional attributes for RestoreSlice
|
RetrieveTPUEmbeddingAdadeltaParameters | Retrieve Adadelta embedding parameters. |
RetrieveTPUEmbeddingAdadeltaParameters.Options | Optional attributes for RetrieveTPUEmbeddingAdadeltaParameters
|
RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug | Retrieve Adadelta embedding parameters with debug support. |
RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug.Options | Optional attributes for RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug
|
RetrieveTPUEmbeddingAdagradParameters | Retrieve Adagrad embedding parameters. |
RetrieveTPUEmbeddingAdagradParameters.Options | Optional attributes for RetrieveTPUEmbeddingAdagradParameters
|
RetrieveTPUEmbeddingAdagradParametersGradAccumDebug | Retrieve Adagrad embedding parameters with debug support. |
RetrieveTPUEmbeddingAdagradParametersGradAccumDebug.Options | Optional attributes for RetrieveTPUEmbeddingAdagradParametersGradAccumDebug
|
RetrieveTPUEmbeddingADAMParameters | Retrieve ADAM embedding parameters. |
RetrieveTPUEmbeddingADAMParameters.Options | Optional attributes for RetrieveTPUEmbeddingADAMParameters
|
RetrieveTPUEmbeddingADAMParametersGradAccumDebug | Retrieve ADAM embedding parameters with debug support. |
RetrieveTPUEmbeddingADAMParametersGradAccumDebug.Options | Optional attributes for RetrieveTPUEmbeddingADAMParametersGradAccumDebug
|
RetrieveTPUEmbeddingCenteredRMSPropParameters | Retrieve centered RMSProp embedding parameters. |
RetrieveTPUEmbeddingCenteredRMSPropParameters.Options | Optional attributes for RetrieveTPUEmbeddingCenteredRMSPropParameters
|
RetrieveTPUEmbeddingFTRLParameters | Retrieve FTRL embedding parameters. |
RetrieveTPUEmbeddingFTRLParameters.Options | Optional attributes for RetrieveTPUEmbeddingFTRLParameters
|
RetrieveTPUEmbeddingFTRLParametersGradAccumDebug | Retrieve FTRL embedding parameters with debug support. |
RetrieveTPUEmbeddingFTRLParametersGradAccumDebug.Options | Optional attributes for RetrieveTPUEmbeddingFTRLParametersGradAccumDebug
|
RetrieveTPUEmbeddingMDLAdagradLightParameters | Retrieve MDL Adagrad Light embedding parameters. |
RetrieveTPUEmbeddingMDLAdagradLightParameters.Options | Optional attributes for RetrieveTPUEmbeddingMDLAdagradLightParameters
|
RetrieveTPUEmbeddingMomentumParameters | Retrieve Momentum embedding parameters. |
RetrieveTPUEmbeddingMomentumParameters.Options | Optional attributes for RetrieveTPUEmbeddingMomentumParameters
|
RetrieveTPUEmbeddingMomentumParametersGradAccumDebug | Retrieve Momentum embedding parameters with debug support. |
RetrieveTPUEmbeddingMomentumParametersGradAccumDebug.Options | Optional attributes for RetrieveTPUEmbeddingMomentumParametersGradAccumDebug
|
RetrieveTPUEmbeddingProximalAdagradParameters | Retrieve proximal Adagrad embedding parameters. |
RetrieveTPUEmbeddingProximalAdagradParameters.Options | Optional attributes for RetrieveTPUEmbeddingProximalAdagradParameters
|
RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug | Retrieve proximal Adagrad embedding parameters with debug support. |
RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug.Options | Optional attributes for RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug
|
RetrieveTPUEmbeddingProximalYogiParameters | |
RetrieveTPUEmbeddingProximalYogiParameters.Options | Optional attributes for RetrieveTPUEmbeddingProximalYogiParameters
|
RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug | |
RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug.Options | Optional attributes for RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug
|
RetrieveTPUEmbeddingRMSPropParameters | Retrieve RMSProp embedding parameters. |
RetrieveTPUEmbeddingRMSPropParameters.Options | Optional attributes for RetrieveTPUEmbeddingRMSPropParameters
|
RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug | Retrieve RMSProp embedding parameters with debug support. |
RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug.Options | Optional attributes for RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug
|
RetrieveTPUEmbeddingStochasticGradientDescentParameters | Retrieve SGD embedding parameters. |
RetrieveTPUEmbeddingStochasticGradientDescentParameters.Options | Optional attributes for RetrieveTPUEmbeddingStochasticGradientDescentParameters
|
RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug | Retrieve SGD embedding parameters with debug support. |
RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug.Options | Optional attributes for RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug
|
Reverse<T extends TType> | Reverses specific dimensions of a tensor. |
ReverseSequence<T extends TType> | Reverses variable length slices. |
ReverseSequence.Options | Optional attributes for ReverseSequence
|
RewriterConfig | Graph rewriting is experimental and subject to change, not covered by any API stability guarantees. |
RewriterConfig.Builder | Graph rewriting is experimental and subject to change, not covered by any API stability guarantees. |
RewriterConfig.CpuLayout | Enum for layout conversion between NCHW and NHWC on CPU. |
RewriterConfig.CustomGraphOptimizer | Message to describe custom graph optimizer and its parameters tensorflow.RewriterConfig.CustomGraphOptimizer
|
RewriterConfig.CustomGraphOptimizer.Builder | Message to describe custom graph optimizer and its parameters tensorflow.RewriterConfig.CustomGraphOptimizer
|
RewriterConfig.CustomGraphOptimizerOrBuilder | |
RewriterConfig.MemOptType | Protobuf enum tensorflow.RewriterConfig.MemOptType
|
RewriterConfig.NumIterationsType | Enum controlling the number of times to run optimizers. |
RewriterConfig.Toggle | Protobuf enum tensorflow.RewriterConfig.Toggle
|
RewriterConfigOrBuilder | |
RewriterConfigProtos | |
Rfft<U extends TType> | Real-valued fast Fourier transform. |
Rfft2d<U extends TType> | 2D real-valued fast Fourier transform. |
Rfft3d<U extends TType> | 3D real-valued fast Fourier transform. |
RgbToHsv<T extends TNumber> | Converts one or more images from RGB to HSV. |
RightShift<T extends TNumber> | Elementwise computes the bitwise right-shift of `x` and `y`. |
Rint<T extends TNumber> | Returns element-wise integer closest to x. |
RMSProp | Optimizer that implements the RMSProp algorithm. |
RngReadAndSkip | Advance the counter of a counter-based RNG. |
RngSkip | Advance the counter of a counter-based RNG. |
Roll<T extends TType> | Rolls the elements of a tensor along an axis. |
Round<T extends TType> | Rounds the values of a tensor to the nearest integer, element-wise. |
Rpc | Perform batches of RPC requests. |
Rpc.Options | Optional attributes for Rpc
|
RPCOptions | Protobuf type tensorflow.RPCOptions
|
RPCOptions.Builder | Protobuf type tensorflow.RPCOptions
|
RPCOptionsOrBuilder | |
Rsqrt<T extends TType> | Computes reciprocal of square root of x element-wise. |
RsqrtGrad<T extends TType> | Computes the gradient for the rsqrt of `x` wrt its input. |
RunConfiguration | Run-specific items such as arguments to the test / benchmark. |
RunConfiguration.Builder | Run-specific items such as arguments to the test / benchmark. |
RunConfigurationOrBuilder | |
RunMetadata | Metadata output (i.e., non-Tensor) for a single Run() call. |
RunMetadata.Builder | Metadata output (i.e., non-Tensor) for a single Run() call. |
RunMetadata.FunctionGraphs | Protobuf type tensorflow.RunMetadata.FunctionGraphs
|
RunMetadata.FunctionGraphs.Builder | Protobuf type tensorflow.RunMetadata.FunctionGraphs
|
RunMetadata.FunctionGraphsOrBuilder | |
RunMetadataOrBuilder | |
RunOptions | Options for a single Run() call. |
RunOptions.Builder | Options for a single Run() call. |
RunOptions.Experimental | Everything inside Experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat. |
RunOptions.Experimental.Builder | Everything inside Experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat. |
RunOptions.Experimental.RunHandlerPoolOptions | Options for run handler thread pool. |
RunOptions.Experimental.RunHandlerPoolOptions.Builder | Options for run handler thread pool. |
RunOptions.Experimental.RunHandlerPoolOptionsOrBuilder | |
RunOptions.ExperimentalOrBuilder | |
RunOptions.TraceLevel | TODO(pbar) Turn this into a TraceOptions proto which allows tracing to be controlled in a more orthogonal manner? tensorflow.RunOptions.TraceLevel
|
RunOptionsOrBuilder |
S
SampleDistortedBoundingBox<T extends TNumber> | Generate a single randomly distorted bounding box for an image. |
SampleDistortedBoundingBox.Options | Optional attributes for SampleDistortedBoundingBox
|
SamplingDataset | Creates a dataset that takes a Bernoulli sample of the contents of another dataset. |
Save | Saves tensors in V2 checkpoint format. |
SaveableObject | Protobuf type tensorflow.SaveableObject
|
SaveableObject.Builder | Protobuf type tensorflow.SaveableObject
|
SaveableObjectOrBuilder | |
SavedAsset | A SavedAsset points to an asset in the MetaGraph. |
SavedAsset.Builder | A SavedAsset points to an asset in the MetaGraph. |
SavedAssetOrBuilder | |
SavedBareConcreteFunction | Protobuf type tensorflow.SavedBareConcreteFunction
|
SavedBareConcreteFunction.Builder | Protobuf type tensorflow.SavedBareConcreteFunction
|
SavedBareConcreteFunctionOrBuilder | |
SavedConcreteFunction | Stores low-level information about a concrete function. |
SavedConcreteFunction.Builder | Stores low-level information about a concrete function. |
SavedConcreteFunctionOrBuilder | |
SavedConstant | Protobuf type tensorflow.SavedConstant
|
SavedConstant.Builder | Protobuf type tensorflow.SavedConstant
|
SavedConstantOrBuilder | |
SavedFunction | A function with multiple signatures, possibly with non-Tensor arguments. |
SavedFunction.Builder | A function with multiple signatures, possibly with non-Tensor arguments. |
SavedFunctionOrBuilder | |
SavedModel | SavedModel is the high level serialization format for TensorFlow Models. |
SavedModel.Builder | SavedModel is the high level serialization format for TensorFlow Models. |
SavedModelBundle | SavedModelBundle represents a model loaded from storage. |
SavedModelBundle.Exporter | Options for exporting a SavedModel. |
SavedModelBundle.Loader | Options for loading a SavedModel. |
SavedModelOrBuilder | |
SavedModelProtos | |
SavedObject | Protobuf type tensorflow.SavedObject
|
SavedObject.Builder | Protobuf type tensorflow.SavedObject
|
SavedObject.KindCase | |
SavedObjectGraph | Protobuf type tensorflow.SavedObjectGraph
|
SavedObjectGraph.Builder | Protobuf type tensorflow.SavedObjectGraph
|
SavedObjectGraphOrBuilder | |
SavedObjectGraphProtos | |
SavedObjectOrBuilder | |
SavedResource | A SavedResource represents a TF object that holds state during its lifetime. |
SavedResource.Builder | A SavedResource represents a TF object that holds state during its lifetime. |
SavedResourceOrBuilder | |
SavedSlice | Saved tensor slice: it stores the name of the tensors, the slice, and the raw data. |
SavedSlice.Builder | Saved tensor slice: it stores the name of the tensors, the slice, and the raw data. |
SavedSliceMeta | Metadata describing the set of slices of the same tensor saved in a checkpoint file. |
SavedSliceMeta.Builder | Metadata describing the set of slices of the same tensor saved in a checkpoint file. |
SavedSliceMetaOrBuilder | |
SavedSliceOrBuilder | |
SavedTensorSliceMeta | Metadata describing the set of tensor slices saved in a checkpoint file. |
SavedTensorSliceMeta.Builder | Metadata describing the set of tensor slices saved in a checkpoint file. |
SavedTensorSliceMetaOrBuilder | |
SavedTensorSliceProtos | |
SavedTensorSlices | Each record in a v3 checkpoint file is a serialized SavedTensorSlices message. |
SavedTensorSlices.Builder | Each record in a v3 checkpoint file is a serialized SavedTensorSlices message. |
SavedTensorSlicesOrBuilder | |
SavedUserObject | A SavedUserObject is an object (in the object-oriented language of the TensorFlow program) of some user- or framework-defined class other than those handled specifically by the other kinds of SavedObjects. |
SavedUserObject.Builder | A SavedUserObject is an object (in the object-oriented language of the TensorFlow program) of some user- or framework-defined class other than those handled specifically by the other kinds of SavedObjects. |
SavedUserObjectOrBuilder | |
SavedVariable | Represents a Variable that is initialized by loading the contents from the checkpoint. |
SavedVariable.Builder | Represents a Variable that is initialized by loading the contents from the checkpoint. |
SavedVariableOrBuilder | |
SaverDef | Protocol buffer representing the configuration of a Saver. |
SaverDef.Builder | Protocol buffer representing the configuration of a Saver. |
SaverDef.CheckpointFormatVersion | A version number that identifies a different on-disk checkpoint format. |
SaverDefOrBuilder | |
SaverProtos | |
SaveSliceInfoDef | Protobuf type tensorflow.SaveSliceInfoDef
|
SaveSliceInfoDef.Builder | Protobuf type tensorflow.SaveSliceInfoDef
|
SaveSliceInfoDefOrBuilder | |
SaveSlices | Saves input tensors slices to disk. |
ScalarSummary | Outputs a `Summary` protocol buffer with scalar values. |
ScaleAndTranslate | |
ScaleAndTranslate.Options | Optional attributes for ScaleAndTranslate
|
ScaleAndTranslateGrad<T extends TNumber> | |
ScaleAndTranslateGrad.Options | Optional attributes for ScaleAndTranslateGrad
|
ScatterAdd<T extends TType> | Adds sparse updates to a variable reference. |
ScatterAdd.Options | Optional attributes for ScatterAdd
|
ScatterDiv<T extends TType> | Divides a variable reference by sparse updates. |
ScatterDiv.Options | Optional attributes for ScatterDiv
|
ScatterMax<T extends TNumber> | Reduces sparse updates into a variable reference using the `max` operation. |
ScatterMax.Options | Optional attributes for ScatterMax
|
ScatterMin<T extends TNumber> | Reduces sparse updates into a variable reference using the `min` operation. |
ScatterMin.Options | Optional attributes for ScatterMin
|
ScatterMul<T extends TType> | Multiplies sparse updates into a variable reference. |
ScatterMul.Options | Optional attributes for ScatterMul
|
ScatterNd<U extends TType> | Scatter `updates` into a new tensor according to `indices`. |
ScatterNdAdd<T extends TType> | Applies sparse addition to individual values or slices in a Variable. |
ScatterNdAdd.Options | Optional attributes for ScatterNdAdd
|
ScatterNdMax<T extends TType> | Computes element-wise maximum. |
ScatterNdMax.Options | Optional attributes for ScatterNdMax
|
ScatterNdMin<T extends TType> | Computes element-wise minimum. |
ScatterNdMin.Options | Optional attributes for ScatterNdMin
|
ScatterNdNonAliasingAdd<T extends TType> | Applies sparse addition to `input` using individual values or slices
from `updates` according to indices `indices`. |
ScatterNdSub<T extends TType> | Applies sparse subtraction to individual values or slices in a Variable. |
ScatterNdSub.Options | Optional attributes for ScatterNdSub
|
ScatterNdUpdate<T extends TType> | Applies sparse `updates` to individual values or slices within a given
variable according to `indices`. |
ScatterNdUpdate.Options | Optional attributes for ScatterNdUpdate
|
ScatterSub<T extends TType> | Subtracts sparse updates to a variable reference. |
ScatterSub.Options | Optional attributes for ScatterSub
|
ScatterUpdate<T extends TType> | Applies sparse updates to a variable reference. |
ScatterUpdate.Options | Optional attributes for ScatterUpdate
|
Scope | Manages groups of related properties when creating Tensorflow Operations, such as a common name prefix. |
ScopedAllocatorOptions | Protobuf type tensorflow.ScopedAllocatorOptions
|
ScopedAllocatorOptions.Builder | Protobuf type tensorflow.ScopedAllocatorOptions
|
ScopedAllocatorOptionsOrBuilder | |
SdcaFprint | Computes fingerprints of the input strings. |
SdcaOptimizer | Distributed version of Stochastic Dual Coordinate Ascent (SDCA) optimizer for
linear models with L1 + L2 regularization. |
SdcaOptimizer.Options | Optional attributes for SdcaOptimizer
|
SdcaShrinkL1 | Applies L1 regularization shrink step on the parameters. |
SegmentMax<T extends TNumber> | Computes the maximum along segments of a tensor. |
SegmentMean<T extends TType> | Computes the mean along segments of a tensor. |
SegmentMin<T extends TNumber> | Computes the minimum along segments of a tensor. |
SegmentProd<T extends TType> | Computes the product along segments of a tensor. |
SegmentSum<T extends TType> | Computes the sum along segments of a tensor. |
Select<T extends TType> | |
SelfAdjointEig<T extends TType> | Computes the eigen decomposition of one or more square self-adjoint matrices. |
SelfAdjointEig<T extends TType> | Computes the eigen decomposition of a batch of self-adjoint matrices
(Note: Only real inputs are supported). |
SelfAdjointEig.Options | Optional attributes for SelfAdjointEig
|
Selu<T extends TNumber> | Computes scaled exponential linear: `scale * alpha * (exp(features) - 1)`
if < 0, `scale * features` otherwise. |
SELU<T extends TFloating> | Scaled Exponential Linear Unit (SELU). |
SeluGrad<T extends TNumber> | Computes gradients for the scaled exponential linear (Selu) operation. |
Send | Sends the named tensor from send_device to recv_device. |
Send | Sends the named tensor to another XLA computation. |
Send.Options | Optional attributes for Send
|
SendTPUEmbeddingGradients | Performs gradient updates of embedding tables. |
SequenceExample | Protobuf type tensorflow.SequenceExample
|
SequenceExample.Builder | Protobuf type tensorflow.SequenceExample
|
SequenceExampleOrBuilder | |
SerializeIterator | Converts the given `resource_handle` representing an iterator to a variant tensor. |
SerializeIterator.Options | Optional attributes for SerializeIterator
|
SerializeManySparse<U extends TType> | Serialize an `N`-minibatch `SparseTensor` into an `[N, 3]` `Tensor` object. |
SerializeSparse<U extends TType> | Serialize a `SparseTensor` into a `[3]` `Tensor` object. |
SerializeTensor | Transforms a Tensor into a serialized TensorProto proto. |
Server | An in-process TensorFlow server, for use in distributed training. |
ServerDef | Defines the configuration of a single TensorFlow server. |
ServerDef.Builder | Defines the configuration of a single TensorFlow server. |
ServerDefOrBuilder | |
ServerProtos | |
ServiceConfig | |
ServiceConfig.DispatcherConfig | Configuration for a tf.data service DispatchServer. |
ServiceConfig.DispatcherConfig.Builder | Configuration for a tf.data service DispatchServer. |
ServiceConfig.DispatcherConfigOrBuilder | |
ServiceConfig.WorkerConfig | Configuration for a tf.data service WorkerServer. |
ServiceConfig.WorkerConfig.Builder | Configuration for a tf.data service WorkerServer. |
ServiceConfig.WorkerConfigOrBuilder | |
Session | Driver for Graph execution. |
Session.Run | Output tensors and metadata obtained when executing a session. |
Session.Runner | Run Operation s and evaluate Tensors . |
SessionLog | Protocol buffer used for logging session state. |
SessionLog.Builder | Protocol buffer used for logging session state. |
SessionLog.SessionStatus | Protobuf enum tensorflow.SessionLog.SessionStatus
|
SessionLogOrBuilder | |
SessionMetadata | Metadata about the session. |
SessionMetadata.Builder | Metadata about the session. |
SessionMetadataOrBuilder | |
SetDiff1d<T extends TType, U extends TNumber> | Computes the difference between two lists of numbers or strings. |
SetSize | Number of unique elements along last dimension of input `set`. |
SetSize.Options | Optional attributes for SetSize
|
SetsOps | Implementation of set operations |
SetsOps.Operation | Enumeration containing the string operation values to be passed to the TensorFlow Sparse Ops
function ERROR(/SparseOps#denseToDenseSetOperation)
|
SetStatsAggregatorDataset | |
SetStatsAggregatorDataset | |
Shape | The shape of a Tensor or NdArray . |
Shape<U extends TNumber> | Returns the shape of a tensor. |
Shape_inference_func_TF_ShapeInferenceContext_TF_Status | |
Shaped | Any data container with a given Shape . |
ShapeN<U extends TNumber> | Returns shape of tensors. |
Shapes | An operator providing methods on org.tensorflow.op.core.Shape tensors and 1d operands that represent the dimensions of a shape. |
ShapeUtils | Various methods for processing with Shapes and Operands |
ShardDataset | Creates a `Dataset` that includes only 1/`num_shards` of this dataset. |
ShardDataset.Options | Optional attributes for ShardDataset
|
ShardedFilename | Generate a sharded filename. |
ShardedFilespec | Generate a glob pattern matching all sharded file names. |
Sharding<T extends TType> | An op which shards the input based on the given sharding attribute. |
ShortDataBuffer | A DataBuffer of shorts. |
ShortDataLayout<S extends DataBuffer<?>> | A DataLayout that converts data stored in a buffer to shorts. |
ShortDenseNdArray | |
ShortNdArray | An NdArray of shorts. |
ShuffleAndRepeatDataset | |
ShuffleAndRepeatDataset.Options | Optional attributes for ShuffleAndRepeatDataset
|
ShuffleDataset | |
ShuffleDataset.Options | Optional attributes for ShuffleDataset
|
ShutdownDistributedTPU | Shuts down a running distributed TPU system. |
Sigmoid<T extends TFloating> | Sigmoid activation. |
Sigmoid<T extends TType> | Computes sigmoid of `x` element-wise. |
SigmoidCrossEntropyWithLogits | |
SigmoidGrad<T extends TType> | Computes the gradient of the sigmoid of `x` wrt its input. |
Sign<T extends TType> | Returns an element-wise indication of the sign of a number. |
Signature | Describe the inputs and outputs of an executable entity, such as a ConcreteFunction , among
other useful metadata. |
Signature.Builder | Builds a new function signature. |
Signature.TensorDescription | |
SignatureDef | SignatureDef defines the signature of a computation supported by a TensorFlow graph. |
SignatureDef.Builder | SignatureDef defines the signature of a computation supported by a TensorFlow graph. |
SignatureDefOrBuilder | |
Sin<T extends TType> | Computes sine of x element-wise. |
SingleElementSequence<T, U extends NdArray<T>> | A sequence of one single element |
Sinh<T extends TType> | Computes hyperbolic sine of x element-wise. |
Size<U extends TNumber> | Returns the size of a tensor. |
SkipDataset | |
SkipDataset | Creates a dataset that skips `count` elements from the `input_dataset`. |
Skipgram | Parses a text file and creates a batch of examples. |
Skipgram.Options | Optional attributes for Skipgram
|
SleepDataset | |
SleepDataset | |
Slice<T extends TType> | Return a slice from 'input'. |
SlicingElementSequence<T, U extends NdArray<T>> | A sequence creating a new NdArray instance (slice) for each element of an iteration |
SlidingWindowDataset | Creates a dataset that passes a sliding window over `input_dataset`. |
SlidingWindowDataset | Creates a dataset that passes a sliding window over `input_dataset`. |
Snapshot<T extends TType> | Returns a copy of the input tensor. |
SnapShot | Protobuf type tensorflow.SnapShot
|
SnapShot.Builder | Protobuf type tensorflow.SnapShot
|
SnapshotMetadataRecord | This stores the metadata information present in each snapshot record. |
SnapshotMetadataRecord.Builder | This stores the metadata information present in each snapshot record. |
SnapshotMetadataRecordOrBuilder | |
SnapShotOrBuilder | |
SnapshotProtos | |
SnapshotRecord | Each SnapshotRecord represents one batch of pre-processed input data. |
SnapshotRecord.Builder | Each SnapshotRecord represents one batch of pre-processed input data. |
SnapshotRecordOrBuilder | |
SnapshotTensorMetadata | Metadata for all the tensors in a Snapshot Record. |
SnapshotTensorMetadata.Builder | Metadata for all the tensors in a Snapshot Record. |
SnapshotTensorMetadataOrBuilder | |
SobolSample<T extends TNumber> | Generates points from the Sobol sequence. |
Softmax<T extends TFloating> | Softmax converts a real vector to a vector of categorical probabilities. |
Softmax<T extends TNumber> | Computes softmax activations. |
SoftmaxCrossEntropyWithLogits | |
SoftmaxCrossEntropyWithLogits<T extends TNumber> | Computes softmax cross entropy cost and gradients to backpropagate. |
Softplus<T extends TFloating> | Softplus activation function, softplus(x) = log(exp(x) + 1) . |
Softplus<T extends TNumber> | Computes softplus: `log(exp(features) + 1)`. |
SoftplusGrad<T extends TNumber> | Computes softplus gradients for a softplus operation. |
Softsign<T extends TFloating> | Softsign activation function, softsign(x) = x / (abs(x) + 1) . |
Softsign<T extends TNumber> | Computes softsign: `features / (abs(features) + 1)`. |
SoftsignGrad<T extends TNumber> | Computes softsign gradients for a softsign operation. |
Solve<T extends TType> | Solves systems of linear equations. |
Solve.Options | Optional attributes for Solve
|
Sort<T extends TType> | Wraps the XLA Sort operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#sort . |
SourceFile | Content of a source file involved in the execution of the debugged TensorFlow program. |
SourceFile.Builder | Content of a source file involved in the execution of the debugged TensorFlow program. |
SourceFileOrBuilder | |
SpaceToBatch<T extends TType> | SpaceToBatch for 4-D tensors of type T. |
SpaceToBatchNd<T extends TType> | SpaceToBatch for N-D tensors of type T. |
SpaceToDepth<T extends TType> | SpaceToDepth for tensors of type T. |
SpaceToDepth.Options | Optional attributes for SpaceToDepth
|
SparseAccumulatorApplyGradient | Applies a sparse gradient to a given accumulator. |
SparseAccumulatorTakeGradient<T extends TType> | Extracts the average sparse gradient in a SparseConditionalAccumulator. |
SparseAdd<T extends TType> | Adds two `SparseTensor` objects to produce another `SparseTensor`. |
SparseAddGrad<T extends TType> | The gradient operator for the SparseAdd op. |
SparseApplyAdadelta<T extends TType> | var: Should be from a Variable(). |
SparseApplyAdadelta.Options | Optional attributes for SparseApplyAdadelta
|
SparseApplyAdagrad<T extends TType> | Update relevant entries in '*var' and '*accum' according to the adagrad scheme. |
SparseApplyAdagrad.Options | Optional attributes for SparseApplyAdagrad
|
SparseApplyAdagradDa<T extends TType> | Update entries in '*var' and '*accum' according to the proximal adagrad scheme. |
SparseApplyAdagradDa.Options | Optional attributes for SparseApplyAdagradDa
|
SparseApplyCenteredRmsProp<T extends TType> | Update '*var' according to the centered RMSProp algorithm. |
SparseApplyCenteredRmsProp.Options | Optional attributes for SparseApplyCenteredRmsProp
|
SparseApplyFtrl<T extends TType> | Update relevant entries in '*var' according to the Ftrl-proximal scheme. |
SparseApplyFtrl.Options | Optional attributes for SparseApplyFtrl
|
SparseApplyMomentum<T extends TType> | Update relevant entries in '*var' and '*accum' according to the momentum scheme. |
SparseApplyMomentum.Options | Optional attributes for SparseApplyMomentum
|
SparseApplyProximalAdagrad<T extends TType> | Sparse update entries in '*var' and '*accum' according to FOBOS algorithm. |
SparseApplyProximalAdagrad.Options | Optional attributes for SparseApplyProximalAdagrad
|
SparseApplyProximalGradientDescent<T extends TType> | Sparse update '*var' as FOBOS algorithm with fixed learning rate. |
SparseApplyProximalGradientDescent.Options | Optional attributes for SparseApplyProximalGradientDescent
|
SparseApplyRmsProp<T extends TType> | Update '*var' according to the RMSProp algorithm. |
SparseApplyRmsProp.Options | Optional attributes for SparseApplyRmsProp
|
SparseBincount<U extends TNumber> | Counts the number of occurrences of each value in an integer array. |
SparseBincount.Options | Optional attributes for SparseBincount
|
SparseCategoricalCrossentropy | Computes the crossentropy loss between labels and predictions. |
SparseCategoricalCrossentropy<T extends TNumber> | A metric that computes the sparse categorical cross-entropy loss between true labels and predicted labels. |
SparseConcat<T extends TType> | Concatenates a list of `SparseTensor` along the specified dimension. |
SparseConditionalAccumulator | A conditional accumulator for aggregating sparse gradients. |
SparseConditionalAccumulator.Options | Optional attributes for SparseConditionalAccumulator
|
SparseCountSparseOutput<U extends TNumber> | Performs sparse-output bin counting for a sparse tensor input. |
SparseCountSparseOutput.Options | Optional attributes for SparseCountSparseOutput
|
SparseCross | Generates sparse cross from a list of sparse and dense tensors. |
SparseCrossHashed | Generates sparse cross from a list of sparse and dense tensors. |
SparseDenseCwiseAdd<T extends TType> | Adds up a SparseTensor and a dense Tensor, using these special rules:
(1) Broadcasts the dense side to have the same shape as the sparse side, if eligible; (2) Then, only the dense values pointed to by the indices of the SparseTensor participate in the cwise addition. |
SparseDenseCwiseDiv<T extends TType> | Component-wise divides a SparseTensor by a dense Tensor. |
SparseDenseCwiseMul<T extends TType> | Component-wise multiplies a SparseTensor by a dense Tensor. |
SparseFillEmptyRows<T extends TType> | Fills empty rows in the input 2-D `SparseTensor` with a default value. |
SparseFillEmptyRowsGrad<T extends TType> | The gradient of SparseFillEmptyRows. |
SparseMatMul | Multiply matrix "a" by matrix "b". |
SparseMatMul.Options | Optional attributes for SparseMatMul
|
SparseMatrixAdd | Sparse addition of two CSR matrices, C = alpha * A + beta * B. |
SparseMatrixMatMul<T extends TType> | Matrix-multiplies a sparse matrix with a dense matrix. |
SparseMatrixMatMul.Options | Optional attributes for SparseMatrixMatMul
|
SparseMatrixMul | Element-wise multiplication of a sparse matrix with a dense tensor. |
SparseMatrixNNZ | Returns the number of nonzeroes of `sparse_matrix`. |
SparseMatrixOrderingAMD | Computes the Approximate Minimum Degree (AMD) ordering of `input`. |
SparseMatrixSoftmax | Calculates the softmax of a CSRSparseMatrix. |
SparseMatrixSoftmaxGrad | Calculates the gradient of the SparseMatrixSoftmax op. |
SparseMatrixSparseCholesky | Computes the sparse Cholesky decomposition of `input`. |
SparseMatrixSparseMatMul | Sparse-matrix-multiplies two CSR matrices `a` and `b`. |
SparseMatrixSparseMatMul.Options | Optional attributes for SparseMatrixSparseMatMul
|
SparseMatrixTranspose | Transposes the inner (matrix) dimensions of a CSRSparseMatrix. |
SparseMatrixTranspose.Options | Optional attributes for SparseMatrixTranspose
|
SparseMatrixZeros | Creates an all-zeros CSRSparseMatrix with shape `dense_shape`. |
SparseReduceMax<T extends TNumber> | Computes the max of elements across dimensions of a SparseTensor. |
SparseReduceMax.Options | Optional attributes for SparseReduceMax
|
SparseReduceMaxSparse<T extends TNumber> | Computes the max of elements across dimensions of a SparseTensor. |
SparseReduceMaxSparse.Options | Optional attributes for SparseReduceMaxSparse
|
SparseReduceSum<T extends TType> | Computes the sum of elements across dimensions of a SparseTensor. |
SparseReduceSum.Options | Optional attributes for SparseReduceSum
|
SparseReduceSumSparse<T extends TType> | Computes the sum of elements across dimensions of a SparseTensor. |
SparseReduceSumSparse.Options | Optional attributes for SparseReduceSumSparse
|
SparseReorder<T extends TType> | Reorders a SparseTensor into the canonical, row-major ordering. |
SparseReshape | Reshapes a SparseTensor to represent values in a new dense shape. |
SparseSegmentMean<T extends TNumber> | Computes the mean along sparse segments of a tensor. |
SparseSegmentMeanGrad<T extends TNumber> | Computes gradients for SparseSegmentMean. |
SparseSegmentMeanWithNumSegments<T extends TNumber> | Computes the mean along sparse segments of a tensor. |
SparseSegmentSqrtN<T extends TNumber> | Computes the sum along sparse segments of a tensor divided by the sqrt of N. |
SparseSegmentSqrtNGrad<T extends TNumber> | Computes gradients for SparseSegmentSqrtN. |
SparseSegmentSqrtNWithNumSegments<T extends TNumber> | Computes the sum along sparse segments of a tensor divided by the sqrt of N. |
SparseSegmentSum<T extends TNumber> | Computes the sum along sparse segments of a tensor. |
SparseSegmentSumWithNumSegments<T extends TNumber> | Computes the sum along sparse segments of a tensor. |
SparseSlice<T extends TType> | Slice a `SparseTensor` based on the `start` and `size`. |
SparseSliceGrad<T extends TType> | The gradient operator for the SparseSlice op. |
SparseSoftmax<T extends TNumber> | Applies softmax to a batched N-D `SparseTensor`. |
SparseSoftmaxCrossEntropyWithLogits | |
SparseSoftmaxCrossEntropyWithLogits<T extends TNumber> | Computes softmax cross entropy cost and gradients to backpropagate. |
SparseSparseMaximum<T extends TNumber> | Returns the element-wise max of two SparseTensors. |
SparseSparseMinimum<T extends TType> | Returns the element-wise min of two SparseTensors. |
SparseSplit<T extends TType> | Split a `SparseTensor` into `num_split` tensors along one dimension. |
SparseTensorDenseAdd<U extends TType> | Adds up a `SparseTensor` and a dense `Tensor`, producing a dense `Tensor`. |
SparseTensorDenseMatMul<U extends TType> | Multiply SparseTensor (of rank 2) "A" by dense matrix "B". |
SparseTensorDenseMatMul.Options | Optional attributes for SparseTensorDenseMatMul
|
SparseTensorSliceDataset | Creates a dataset that splits a SparseTensor into elements row-wise. |
SparseTensorToCSRSparseMatrix | Converts a SparseTensor to a (possibly batched) CSRSparseMatrix. |
SparseToDense<U extends TType> | Converts a sparse representation into a dense tensor. |
SparseToDense.Options | Optional attributes for SparseToDense
|
SparseToSparseSetOperation<T extends TType> | Applies set operation along last dimension of 2 `SparseTensor` inputs. |
SparseToSparseSetOperation.Options | Optional attributes for SparseToSparseSetOperation
|
SpecializedType | For identifying the underlying type of a variant. |
Spence<T extends TNumber> | |
Split<T extends TType> | Splits a tensor into `num_split` tensors along one dimension. |
SplitV<T extends TType> | Splits a tensor into `num_split` tensors along one dimension. |
SqlDataset | Creates a dataset that executes a SQL query and emits rows of the result set. |
SqlDataset | Creates a dataset that executes a SQL query and emits rows of the result set. |
Sqrt<T extends TType> | Computes square root of x element-wise. |
SqrtGrad<T extends TType> | Computes the gradient for the sqrt of `x` wrt its input. |
Sqrtm<T extends TType> | Computes the matrix square root of one or more square matrices:
matmul(sqrtm(A), sqrtm(A)) = A The input matrix should be invertible. |
Square<T extends TType> | Computes square of x element-wise. |
SquaredDifference<T extends TType> | Returns conj(x - y)(x - y) element-wise. |
SquaredHinge | Computes the squared hinge loss between labels and predictions. |
SquaredHinge<T extends TNumber> | A metric that computes the squared hinge loss metric between labels and predictions. |
Squeeze<T extends TType> | Removes dimensions of size 1 from the shape of a tensor. |
Squeeze.Options | Optional attributes for Squeeze
|
Stack<T extends TType> | Packs a list of `N` rank-`R` tensors into one rank-`(R+1)` tensor. |
Stack.Options | Optional attributes for Stack
|
StackFrameWithId | A stack frame with ID. |
StackFrameWithId.Builder | A stack frame with ID. |
StackFrameWithIdOrBuilder | |
Stage | Stage values similar to a lightweight Enqueue. |
Stage.Options | Optional attributes for Stage
|
StageClear | Op removes all elements in the underlying container. |
StageClear.Options | Optional attributes for StageClear
|
StagePeek | Op peeks at the values at the specified index. |
StagePeek.Options | Optional attributes for StagePeek
|
StageSize | Op returns the number of elements in the underlying container. |
StageSize.Options | Optional attributes for StageSize
|
StatefulRandomBinomial<V extends TNumber> | |
StatefulStandardNormal<U extends TType> | Outputs random values from a normal distribution. |
StatefulTruncatedNormal<U extends TType> | Outputs random values from a truncated normal distribution. |
StatefulUniform<U extends TType> | Outputs random values from a uniform distribution. |
StatefulUniformFullInt<U extends TType> | Outputs random integers from a uniform distribution. |
StatefulUniformInt<U extends TType> | Outputs random integers from a uniform distribution. |
StatelessMultinomial<V extends TNumber> | Draws samples from a multinomial distribution. |
StatelessParameterizedTruncatedNormal<V extends TNumber> | |
StatelessRandomBinomial<W extends TNumber> | Outputs deterministic pseudorandom random numbers from a binomial distribution. |
StatelessRandomGamma<V extends TNumber> | Outputs deterministic pseudorandom random numbers from a gamma distribution. |
StatelessRandomGetKeyCounterAlg | Picks the best algorithm based on device, and scrambles seed into key and counter. |
StatelessRandomNormal<V extends TNumber> | Outputs deterministic pseudorandom values from a normal distribution. |
StatelessRandomNormalV2<U extends TNumber> | Outputs deterministic pseudorandom values from a normal distribution. |
StatelessRandomPoisson<W extends TNumber> | Outputs deterministic pseudorandom random numbers from a Poisson distribution. |
StatelessRandomUniform<V extends TNumber> | Outputs deterministic pseudorandom random values from a uniform distribution. |
StatelessRandomUniformFullInt<V extends TNumber> | Outputs deterministic pseudorandom random integers from a uniform distribution. |
StatelessRandomUniformFullIntV2<U extends TNumber> | Outputs deterministic pseudorandom random integers from a uniform distribution. |
StatelessRandomUniformInt<V extends TNumber> | Outputs deterministic pseudorandom random integers from a uniform distribution. |
StatelessRandomUniformIntV2<U extends TNumber> | Outputs deterministic pseudorandom random integers from a uniform distribution. |
StatelessRandomUniformV2<U extends TNumber> | Outputs deterministic pseudorandom random values from a uniform distribution. |
StatelessSampleDistortedBoundingBox<T extends TNumber> | Generate a randomly distorted bounding box for an image deterministically. |
StatelessSampleDistortedBoundingBox.Options | Optional attributes for StatelessSampleDistortedBoundingBox
|
StatelessTruncatedNormal<V extends TNumber> | Outputs deterministic pseudorandom values from a truncated normal distribution. |
StatelessTruncatedNormalV2<U extends TNumber> | Outputs deterministic pseudorandom values from a truncated normal distribution. |
StaticRegexFullMatch | Check if the input matches the regex pattern. |
StaticRegexReplace | Replaces the match of pattern in input with rewrite. |
StaticRegexReplace.Options | Optional attributes for StaticRegexReplace
|
StatsAggregatorHandle | Creates a statistics manager resource. |
StatsAggregatorHandle | |
StatsAggregatorHandle.Options | Optional attributes for StatsAggregatorHandle
|
StatsAggregatorHandle.Options | Optional attributes for StatsAggregatorHandle
|
StatsAggregatorSetSummaryWriter | Set a summary_writer_interface to record statistics using given stats_aggregator. |
StatsAggregatorSummary | Produces a summary of any statistics recorded by the given statistics manager. |
StatsAggregatorSummary | Produces a summary of any statistics recorded by the given statistics manager. |
StdArrays | Utility class for working with NdArray instances mixed with standard Java arrays. |
StepStats | Protobuf type tensorflow.StepStats
|
StepStats.Builder | Protobuf type tensorflow.StepStats
|
StepStatsOrBuilder | |
StepStatsProtos | |
StopGradient<T extends TType> | Stops gradient computation. |
StridedSlice<T extends TType> | Return a strided slice from `input`. |
StridedSlice.Options | Optional attributes for StridedSlice
|
StridedSliceAssign<T extends TType> | Assign `value` to the sliced l-value reference of `ref`. |
StridedSliceAssign.Options | Optional attributes for StridedSliceAssign
|
StridedSliceGrad<U extends TType> | Returns the gradient of `StridedSlice`. |
StridedSliceGrad.Options | Optional attributes for StridedSliceGrad
|
StridedSliceHelper | Helper endpoint methods for Python like indexing. |
StringFormat | Formats a string template using a list of tensors. |
StringFormat.Options | Optional attributes for StringFormat
|
StringLayout | Data layout that converts a String to/from a sequence of bytes applying a given charset. |
StringLength | String lengths of `input`. |
StringLength.Options | Optional attributes for StringLength
|
StringNGrams<T extends TNumber> | Creates ngrams from ragged string data. |
StringSplit | Split elements of `source` based on `sep` into a `SparseTensor`. |
StringSplit.Options | Optional attributes for StringSplit
|
Strip | Strip leading and trailing whitespaces from the Tensor. |
StructProtos | |
StructuredValue | `StructuredValue` represents a dynamically typed value representing various data structures that are inspired by Python data structures typically used in TensorFlow functions as inputs and outputs. |
StructuredValue.Builder | `StructuredValue` represents a dynamically typed value representing various data structures that are inspired by Python data structures typically used in TensorFlow functions as inputs and outputs. |
StructuredValue.KindCase | |
StructuredValueOrBuilder | |
Sub<T extends TType> | Returns x - y element-wise. |
Substr | Return substrings from `Tensor` of strings. |
Substr.Options | Optional attributes for Substr
|
Sum<T extends TType> | Computes the sum of elements across dimensions of a tensor. |
Sum.Options | Optional attributes for Sum
|
Summary | A Summary is a set of named values to be displayed by the visualizer. |
Summary.Audio | Protobuf type tensorflow.Summary.Audio
|
Summary.Audio.Builder | Protobuf type tensorflow.Summary.Audio
|
Summary.AudioOrBuilder | |
Summary.Builder | A Summary is a set of named values to be displayed by the visualizer. |
Summary.Image | Protobuf type tensorflow.Summary.Image
|
Summary.Image.Builder | Protobuf type tensorflow.Summary.Image
|
Summary.ImageOrBuilder | |
Summary.Value | Protobuf type tensorflow.Summary.Value
|
Summary.Value.Builder | Protobuf type tensorflow.Summary.Value
|
Summary.Value.ValueCase | |
Summary.ValueOrBuilder | |
SummaryDescription | Metadata associated with a series of Summary data tensorflow.SummaryDescription
|
SummaryDescription.Builder | Metadata associated with a series of Summary data tensorflow.SummaryDescription
|
SummaryDescriptionOrBuilder | |
SummaryMetadata | A SummaryMetadata encapsulates information on which plugins are able to make use of a certain summary value. |
SummaryMetadata.Builder | A SummaryMetadata encapsulates information on which plugins are able to make use of a certain summary value. |
SummaryMetadata.PluginData | Protobuf type tensorflow.SummaryMetadata.PluginData
|
SummaryMetadata.PluginData.Builder | Protobuf type tensorflow.SummaryMetadata.PluginData
|
SummaryMetadata.PluginDataOrBuilder | |
SummaryMetadataOrBuilder | |
SummaryOrBuilder | |
SummaryProtos | |
SummaryWriter | |
SummaryWriter.Options | Optional attributes for SummaryWriter
|
Svd<T extends TType> | Computes the singular value decompositions of one or more matrices. |
Svd<T extends TType> | Computes the eigen decomposition of a batch of self-adjoint matrices
(Note: Only real inputs are supported). |
Svd.Options | Optional attributes for Svd
|
Swish<T extends TFloating> | Swish activation function. |
SwitchCond<T extends TType> | Forwards `data` to the output port determined by `pred`. |
T
TaggedRunMetadata | For logging the metadata output for a single session.run() call. |
TaggedRunMetadata.Builder | For logging the metadata output for a single session.run() call. |
TaggedRunMetadataOrBuilder | |
TakeDataset | |
TakeDataset | Creates a dataset that contains `count` elements from the `input_dataset`. |
TakeManySparseFromTensorsMap<T extends TType> | Read `SparseTensors` from a `SparseTensorsMap` and concatenate them. |
TakeManySparseFromTensorsMap.Options | Optional attributes for TakeManySparseFromTensorsMap
|
Tan<T extends TType> | Computes tan of x element-wise. |
Tanh<T extends TFloating> | Hyperbolic tangent activation function. |
Tanh<T extends TType> | Computes hyperbolic tangent of `x` element-wise. |
TanhGrad<T extends TType> | Computes the gradient for the tanh of `x` wrt its input. |
TaskDeviceFilters | Defines the device filters for a remote task. |
TaskDeviceFilters.Builder | Defines the device filters for a remote task. |
TaskDeviceFiltersOrBuilder | |
TBfloat16 | Brain 16-bit float tensor type. |
TBfloat16Mapper | Maps memory of DT_BFLOAT16 tensors
to a n-dimensional data space. |
TBool | Boolean tensor type. |
TBoolMapper | Maps memory of DT_BOOL tensors
to a n-dimensional data space. |
TemporaryVariable<T extends TType> | Returns a tensor that may be mutated, but only persists within a single step. |
TemporaryVariable.Options | Optional attributes for TemporaryVariable
|
Tensor | A statically typed multi-dimensional array. |
Tensor | |
TensorArray | An array of Tensors of given size. |
TensorArray.Options | Optional attributes for TensorArray
|
TensorArrayClose | Delete the TensorArray from its resource container. |
TensorArrayConcat<T extends TType> | Concat the elements from the TensorArray into value `value`. |
TensorArrayConcat.Options | Optional attributes for TensorArrayConcat
|
TensorArrayGather<T extends TType> | Gather specific elements from the TensorArray into output `value`. |
TensorArrayGather.Options | Optional attributes for TensorArrayGather
|
TensorArrayGrad | Creates a TensorArray for storing the gradients of values in the given handle. |
TensorArrayGradWithShape | Creates a TensorArray for storing multiple gradients of values in the given handle. |
TensorArrayPack<T extends TType> | |
TensorArrayPack.Options | Optional attributes for TensorArrayPack
|
TensorArrayRead<T extends TType> | Read an element from the TensorArray into output `value`. |
TensorArrayScatter | Scatter the data from the input value into specific TensorArray elements. |
TensorArraySize | Get the current size of the TensorArray. |
TensorArraySplit | Split the data from the input value into TensorArray elements. |
TensorArrayUnpack | |
TensorArrayWrite | Push an element onto the tensor_array. |
TensorBuffers | Maps native tensor memory into DataBuffers , allowing I/O operations from the JVM. |
TensorBundleProtos | |
TensorConnection | Defines a connection between two tensors in a `GraphDef`. |
TensorConnection.Builder | Defines a connection between two tensors in a `GraphDef`. |
TensorConnectionOrBuilder | |
TensorDataset | Creates a dataset that emits `components` as a tuple of tensors once. |
TensorDebugMode | Available modes for extracting debugging information from a Tensor. |
TensorDescription | Protobuf type tensorflow.TensorDescription
|
TensorDescription.Builder | Protobuf type tensorflow.TensorDescription
|
TensorDescriptionOrBuilder | |
TensorDescriptionProtos | |
TensorDiag<T extends TType> | Returns a diagonal tensor with a given diagonal values. |
TensorDiagPart<T extends TType> | Returns the diagonal part of the tensor. |
TensorFlow | Static utility methods describing the TensorFlow runtime. |
tensorflow | |
tensorflow | |
TensorFlowException | Unchecked exception thrown by TensorFlow core classes |
TensorForestCreateTreeVariable | Creates a tree resource and returns a handle to it. |
TensorForestTreeDeserialize | Deserializes a proto into the tree handle |
TensorForestTreeIsInitializedOp | Checks whether a tree has been initialized. |
TensorForestTreePredict | Output the logits for the given input data |
TensorForestTreeResourceHandleOp | Creates a handle to a TensorForestTreeResource |
TensorForestTreeResourceHandleOp.Options | Optional attributes for TensorForestTreeResourceHandleOp
|
TensorForestTreeSerialize | Serializes the tree handle to a proto |
TensorForestTreeSize | Get the number of nodes in a tree |
TensorInfo | Information about a Tensor necessary for feeding or retrieval. |
TensorInfo.Builder | Information about a Tensor necessary for feeding or retrieval. |
TensorInfo.CompositeTensor | Generic encoding for composite tensors. |
TensorInfo.CompositeTensor.Builder | Generic encoding for composite tensors. |
TensorInfo.CompositeTensorOrBuilder | |
TensorInfo.CooSparse | For sparse tensors, The COO encoding stores a triple of values, indices, and shape. |
TensorInfo.CooSparse.Builder | For sparse tensors, The COO encoding stores a triple of values, indices, and shape. |
TensorInfo.CooSparseOrBuilder | |
TensorInfo.EncodingCase | |
TensorInfoOrBuilder | |
TensorListConcat<U extends TType> | Concats all tensors in the list along the 0th dimension. |
TensorListConcatLists | |
TensorListElementShape<T extends TNumber> | The shape of the elements of the given list, as a tensor. |
TensorListFromTensor | Creates a TensorList which, when stacked, has the value of `tensor`. |
TensorListGather<T extends TType> | Creates a Tensor by indexing into the TensorList. |
TensorListGetItem<T extends TType> | |
TensorListLength | Returns the number of tensors in the input tensor list. |
TensorListPopBack<T extends TType> | Returns the last element of the input list as well as a list with all but that element. |
TensorListPushBack | Returns a list which has the passed-in `Tensor` as last element and the other elements of the given list in `input_handle`. |
TensorListPushBackBatch | |
TensorListReserve | List of the given size with empty elements. |
TensorListResize | Resizes the list. |
TensorListScatter | Creates a TensorList by indexing into a Tensor. |
TensorListScatterIntoExistingList | Scatters tensor at indices in an input list. |
TensorListSetItem | |
TensorListSplit | Splits a tensor into a list. |
TensorListStack<T extends TType> | Stacks all tensors in the list. |
TensorListStack.Options | Optional attributes for TensorListStack
|
TensorMapErase | Returns a tensor map with item from given key erased. |
TensorMapHasKey | Returns whether the given key exists in the map. |
TensorMapInsert | Returns a map that is the 'input_handle' with the given key-value pair inserted. |
TensorMapLookup<U extends TType> | Returns the value from a given key in a tensor map. |
TensorMapper<T extends TType> | Maps the native memory of a RawTensor to a n-dimensional typed data space
accessible from the JVM. |
TensorMapSize | Returns the number of tensors in the input tensor map. |
TensorMapStackKeys<T extends TType> | Returns a Tensor stack of all keys in a tensor map. |
TensorMetadata | Metadata for a single tensor in the Snapshot Record. |
TensorMetadata.Builder | Metadata for a single tensor in the Snapshot Record. |
TensorMetadataOrBuilder | |
TensorProto | Protocol buffer representing a tensor. |
TensorProto.Builder | Protocol buffer representing a tensor. |
TensorProtoOrBuilder | |
TensorProtos | |
TensorScatterNdAdd<T extends TType> | Adds sparse `updates` to an existing tensor according to `indices`. |
TensorScatterNdMax<T extends TType> | |
TensorScatterNdMin<T extends TType> | |
TensorScatterNdSub<T extends TType> | Subtracts sparse `updates` from an existing tensor according to `indices`. |
TensorScatterNdUpdate<T extends TType> | Scatter `updates` into an existing tensor according to `indices`. |
TensorShapeProto | Dimensions of a tensor. |
TensorShapeProto.Builder | Dimensions of a tensor. |
TensorShapeProto.Dim | One dimension of the tensor. |
TensorShapeProto.Dim.Builder | One dimension of the tensor. |
TensorShapeProto.DimOrBuilder | |
TensorShapeProtoOrBuilder | |
TensorShapeProtos | |
TensorSliceDataset | |
TensorSliceDataset | Creates a dataset that emits each dim-0 slice of `components` once. |
TensorSliceProto | Can only be interpreted if you know the corresponding TensorShape. |
TensorSliceProto.Builder | Can only be interpreted if you know the corresponding TensorShape. |
TensorSliceProto.Extent | Extent of the slice in one dimension. |
TensorSliceProto.Extent.Builder | Extent of the slice in one dimension. |
TensorSliceProto.Extent.HasLengthCase | |
TensorSliceProto.ExtentOrBuilder | |
TensorSliceProtoOrBuilder | |
TensorSliceProtos | |
TensorSpecProto | A protobuf to represent tf.TensorSpec. |
TensorSpecProto.Builder | A protobuf to represent tf.TensorSpec. |
TensorSpecProtoOrBuilder | |
TensorStridedSliceUpdate<T extends TType> | Assign `value` to the sliced l-value reference of `input`. |
TensorStridedSliceUpdate.Options | Optional attributes for TensorStridedSliceUpdate
|
TensorSummary | Outputs a `Summary` protocol buffer with a tensor and per-plugin data. |
TensorType | Annotation for all tensor types. |
TensorTypeInfo<T extends TType> | Registered information about a tensor type. |
TensorTypeRegistry | Repository of all registered tensor types. |
TestLogProtos | |
TestResults | The output of one benchmark / test run. |
TestResults.BenchmarkType | The type of benchmark. |
TestResults.Builder | The output of one benchmark / test run. |
TestResultsOrBuilder | |
TextLineDataset | |
TextLineDataset | Creates a dataset that emits the lines of one or more text files. |
TextLineReader | A Reader that outputs the lines of a file delimited by '\n'. |
TextLineReader.Options | Optional attributes for TextLineReader
|
TF_AllocatorAttributes | |
TF_ApiDefMap | |
TF_AttrMetadata | |
TF_Buffer | |
TF_Buffer.Data_deallocator_Pointer_long | |
TF_DeprecatedSession | |
TF_DeviceList | |
TF_DimensionHandle | |
TF_Function | |
TF_FunctionOptions | |
TF_Graph | |
TF_ImportGraphDefOptions | |
TF_ImportGraphDefResults | |
TF_Input | |
TF_KernelBuilder | |
TF_Library | |
TF_OpDefinitionBuilder | |
TF_Operation | |
TF_OperationDescription | |
TF_OpKernelConstruction | |
TF_OpKernelContext | |
TF_Output | |
TF_Server | |
TF_Session | |
TF_SessionOptions | |
TF_ShapeHandle | |
TF_ShapeInferenceContext | |
TF_Status | |
TF_StringView | |
TF_Tensor | |
TF_TString | |
TF_TString_Large | |
TF_TString_Offset | |
TF_TString_Raw | |
TF_TString_Small | |
TF_TString_Union | |
TF_TString_View | |
TF_WhileParams | |
TFE_Context | |
TFE_ContextOptions | |
TFE_Op | |
TFE_TensorDebugInfo | |
TFE_TensorHandle | |
TFFailedPreconditionException | |
TFInvalidArgumentException | |
TFloat16 | IEEE-754 half-precision 16-bit float tensor type. |
TFloat16Mapper | Maps memory of DT_HALF tensors
to a n-dimensional data space. |
TFloat32 | IEEE-754 single-precision 32-bit float tensor type. |
TFloat32Mapper | Maps memory of DT_FLOAT tensors
to a n-dimensional data space. |
TFloat64 | IEEE-754 double-precision 64-bit float tensor type. |
TFloat64Mapper | Maps memory of DT_DOUBLE tensors
to a n-dimensional data space. |
TFloating | Common interface for all floating point tensors. |
TFOutOfRangeException | |
TFPermissionDeniedException | |
TfRecordDataset | Creates a dataset that emits the records from one or more TFRecord files. |
TFRecordDataset | |
TfRecordReader | A Reader that outputs the records from a TensorFlow Records file. |
TfRecordReader.Options | Optional attributes for TfRecordReader
|
TFResourceExhaustedException | |
TFUnauthenticatedException | |
TFUnimplementedException | |
ThreadPoolDataset | Creates a dataset that uses a custom thread pool to compute `input_dataset`. |
ThreadPoolDataset | Creates a dataset that uses a custom thread pool to compute `input_dataset`. |
ThreadPoolHandle | Creates a dataset that uses a custom thread pool to compute `input_dataset`. |
ThreadPoolHandle | Creates a dataset that uses a custom thread pool to compute `input_dataset`. |
ThreadPoolHandle.Options | Optional attributes for ThreadPoolHandle
|
ThreadPoolHandle.Options | Optional attributes for ThreadPoolHandle
|
ThreadPoolOptionProto | Protobuf type tensorflow.ThreadPoolOptionProto
|
ThreadPoolOptionProto.Builder | Protobuf type tensorflow.ThreadPoolOptionProto
|
ThreadPoolOptionProtoOrBuilder | |
Tile<T extends TType> | Constructs a tensor by tiling a given tensor. |
TileGrad<T extends TType> | Returns the gradient of `Tile`. |
Timestamp | Provides the time since epoch in seconds. |
TInt32 | 32-bit signed integer tensor type. |
TInt32Mapper | Maps memory of DT_INT32 tensors
to a n-dimensional data space. |
TInt64 | 64-bit signed integer tensor type. |
TInt64Mapper | Maps memory of DT_INT64 tensors
to a n-dimensional data space. |
TIntegral | Common interface for all integral numeric tensors. |
TNumber | Common interface for all numeric tensors. |
ToBool | Converts a tensor to a scalar predicate. |
ToHashBucket | Converts each string in the input Tensor to its hash mod by a number of buckets. |
ToHashBucketFast | Converts each string in the input Tensor to its hash mod by a number of buckets. |
ToHashBucketStrong | Converts each string in the input Tensor to its hash mod by a number of buckets. |
ToNumber<T extends TNumber> | Converts each string in the input Tensor to the specified numeric type. |
TopK<T extends TNumber> | Finds values and indices of the `k` largest elements for the last dimension. |
TopK.Options | Optional attributes for TopK
|
TopKUnique | Returns the TopK unique values in the array in sorted order. |
TopKWithUnique | Returns the TopK values in the array in sorted order. |
TPUCompilationResult | Returns the result of a TPU compilation. |
TPUEmbeddingActivations | An op enabling differentiation of TPU Embeddings. |
TPUReplicatedInput<T extends TType> | Connects N inputs to an N-way replicated TPU computation. |
TPUReplicatedInput.Options | Optional attributes for TPUReplicatedInput
|
TPUReplicatedOutput<T extends TType> | Connects N outputs from an N-way replicated TPU computation. |
TPUReplicateMetadata | Metadata indicating how the TPU computation should be replicated. |
TPUReplicateMetadata.Options | Optional attributes for TPUReplicateMetadata
|
TrackableObjectGraph | Protobuf type tensorflow.TrackableObjectGraph
|
TrackableObjectGraph.Builder | Protobuf type tensorflow.TrackableObjectGraph
|
TrackableObjectGraph.TrackableObject | Protobuf type tensorflow.TrackableObjectGraph.TrackableObject
|
TrackableObjectGraph.TrackableObject.Builder | Protobuf type tensorflow.TrackableObjectGraph.TrackableObject
|
TrackableObjectGraph.TrackableObject.ObjectReference | Protobuf type tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference
|
TrackableObjectGraph.TrackableObject.ObjectReference.Builder | Protobuf type tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference
|
TrackableObjectGraph.TrackableObject.ObjectReferenceOrBuilder | |
TrackableObjectGraph.TrackableObject.SerializedTensor | Protobuf type tensorflow.TrackableObjectGraph.TrackableObject.SerializedTensor
|
TrackableObjectGraph.TrackableObject.SerializedTensor.Builder | Protobuf type tensorflow.TrackableObjectGraph.TrackableObject.SerializedTensor
|
TrackableObjectGraph.TrackableObject.SerializedTensorOrBuilder | |
TrackableObjectGraph.TrackableObject.SlotVariableReference | Protobuf type tensorflow.TrackableObjectGraph.TrackableObject.SlotVariableReference
|
TrackableObjectGraph.TrackableObject.SlotVariableReference.Builder | Protobuf type tensorflow.TrackableObjectGraph.TrackableObject.SlotVariableReference
|
TrackableObjectGraph.TrackableObject.SlotVariableReferenceOrBuilder | |
TrackableObjectGraph.TrackableObjectOrBuilder | |
TrackableObjectGraphOrBuilder | |
TrackableObjectGraphProtos | |
TransportOptions | |
TransportOptions.RecvBufRespExtra | Extra data needed on a non-RDMA RecvBufResponse. |
TransportOptions.RecvBufRespExtra.Builder | Extra data needed on a non-RDMA RecvBufResponse. |
TransportOptions.RecvBufRespExtraOrBuilder | |
Transpose<T extends TType> | Shuffle dimensions of x according to a permutation. |
TriangularSolve<T extends TType> | Solves systems of linear equations with upper or lower triangular matrices by backsubstitution. |
TriangularSolve.Options | Optional attributes for TriangularSolve
|
TridiagonalMatMul<T extends TType> | Calculate product with tridiagonal matrix. |
TridiagonalSolve<T extends TType> | Solves tridiagonal systems of equations. |
TridiagonalSolve.Options | Optional attributes for TridiagonalSolve
|
TruncateDiv<T extends TType> | Returns x / y element-wise for integer types. |
TruncatedNormal<T extends TFloating> | Initializer that generates a truncated normal distribution. |
TruncatedNormal<U extends TNumber> | Outputs random values from a truncated normal distribution. |
TruncatedNormal.Options | Optional attributes for TruncatedNormal
|
TruncateMod<T extends TNumber> | Returns element-wise remainder of division. |
TryRpc | Perform batches of RPC requests. |
TryRpc.Options | Optional attributes for TryRpc
|
TString | String type. |
TStringInitializer<T> | Helper class for initializing a TString tensor. |
TStringMapper | Maps memory of DT_STRING tensors
to a n-dimensional data space. |
TType | Common interface for all typed tensors. |
TUint8 | 8-bit unsigned integer tensor type. |
TUint8Mapper | Maps memory of DT_UINT8 tensors
to a n-dimensional data space. |
TupleValue | Represents a Python tuple. |
TupleValue.Builder | Represents a Python tuple. |
TupleValueOrBuilder | |
TypeSpecProto | Represents a tf.TypeSpec tensorflow.TypeSpecProto
|
TypeSpecProto.Builder | Represents a tf.TypeSpec tensorflow.TypeSpecProto
|
TypeSpecProto.TypeSpecClass | Protobuf enum tensorflow.TypeSpecProto.TypeSpecClass
|
TypeSpecProtoOrBuilder | |
TypesProtos |
U
Unbatch<T extends TType> | Reverses the operation of Batch for a single output Tensor. |
Unbatch.Options | Optional attributes for Unbatch
|
UnbatchDataset | A dataset that splits the elements of its input into multiple elements. |
UnbatchDataset | A dataset that splits the elements of its input into multiple elements. |
UnbatchGrad<T extends TType> | Gradient of Unbatch. |
UnbatchGrad.Options | Optional attributes for UnbatchGrad
|
UncompressElement | Uncompresses a compressed dataset element. |
UnicodeDecode<T extends TNumber> | Decodes each string in `input` into a sequence of Unicode code points. |
UnicodeDecode.Options | Optional attributes for UnicodeDecode
|
UnicodeDecodeWithOffsets<T extends TNumber> | Decodes each string in `input` into a sequence of Unicode code points. |
UnicodeDecodeWithOffsets.Options | Optional attributes for UnicodeDecodeWithOffsets
|
UnicodeEncode | Encode a tensor of ints into unicode strings. |
UnicodeEncode.Options | Optional attributes for UnicodeEncode
|
UnicodeScript | Determine the script codes of a given tensor of Unicode integer code points. |
UnicodeTranscode | Transcode the input text from a source encoding to a destination encoding. |
UnicodeTranscode.Options | Optional attributes for UnicodeTranscode
|
UniformCandidateSampler | Generates labels for candidate sampling with a uniform distribution. |
UniformCandidateSampler.Options | Optional attributes for UniformCandidateSampler
|
Unique<T extends TType, V extends TNumber> | Finds unique elements along an axis of a tensor. |
UniqueDataset | Creates a dataset that contains the unique elements of `input_dataset`. |
UniqueDataset | Creates a dataset that contains the unique elements of `input_dataset`. |
UniqueWithCounts<T extends TType, V extends TNumber> | Finds unique elements along an axis of a tensor. |
UnitNorm | Constrains the weights to have unit norm. |
UnravelIndex<T extends TNumber> | Converts an array of flat indices into a tuple of coordinate arrays. |
UnsortedSegmentJoin | Joins the elements of `inputs` based on `segment_ids`. |
UnsortedSegmentJoin.Options | Optional attributes for UnsortedSegmentJoin
|
UnsortedSegmentMax<T extends TNumber> | Computes the maximum along segments of a tensor. |
UnsortedSegmentMin<T extends TNumber> | Computes the minimum along segments of a tensor. |
UnsortedSegmentProd<T extends TType> | Computes the product along segments of a tensor. |
UnsortedSegmentSum<T extends TType> | Computes the sum along segments of a tensor. |
Unstack<T extends TType> | Unpacks a given dimension of a rank-`R` tensor into `num` rank-`(R-1)` tensors. |
Unstack.Options | Optional attributes for Unstack
|
Unstage | Op is similar to a lightweight Dequeue. |
Unstage.Options | Optional attributes for Unstage
|
UnwrapDatasetVariant | |
Upper | Converts all lowercase characters into their respective uppercase replacements. |
Upper.Options | Optional attributes for Upper
|
UpperBound<U extends TNumber> | Applies upper_bound(sorted_search_values, values) along each row. |
V
Validator | |
Validator | |
ValuesDef | Protocol buffer representing the values in ControlFlowContext. |
ValuesDef.Builder | Protocol buffer representing the values in ControlFlowContext. |
ValuesDefOrBuilder | |
VarHandleOp | Creates a handle to a Variable resource. |
VarHandleOp.Options | Optional attributes for VarHandleOp
|
Variable<T extends TType> | Holds state in the form of a tensor that persists across steps. |
Variable.Options | Optional attributes for Variable
|
VariableAggregation | Indicates how a distributed variable will be aggregated. |
VariableDef | Protocol buffer representing a Variable. |
VariableDef.Builder | Protocol buffer representing a Variable. |
VariableDefOrBuilder | |
VariableProtos | |
VariableShape<T extends TNumber> | Returns the shape of the variable pointed to by `resource`. |
VariableSynchronization | Indicates when a distributed variable will be synced. |
VarianceScaling<T extends TFloating> | Initializer capable of adapting its scale to the shape of weights tensors. |
VarianceScaling.Distribution | The random distribution to use when initializing the values. |
VarianceScaling.Mode | The mode to use for calculating the fan values. |
VariantTensorDataProto | Protocol buffer representing the serialization format of DT_VARIANT tensors. |
VariantTensorDataProto.Builder | Protocol buffer representing the serialization format of DT_VARIANT tensors. |
VariantTensorDataProtoOrBuilder | |
VarIsInitializedOp | Checks whether a resource handle-based variable has been initialized. |
VarLenFeatureProto | Protobuf type tensorflow.VarLenFeatureProto
|
VarLenFeatureProto.Builder | Protobuf type tensorflow.VarLenFeatureProto
|
VarLenFeatureProtoOrBuilder | |
VerifierConfig | The config for graph verifiers. |
VerifierConfig.Builder | The config for graph verifiers. |
VerifierConfig.Toggle | Protobuf enum tensorflow.VerifierConfig.Toggle
|
VerifierConfigOrBuilder | |
VerifierConfigProtos | |
VersionDef | Version information for a piece of serialized data There are different types of versions for each type of data (GraphDef, etc.), but they all have the same common shape described here. |
VersionDef.Builder | Version information for a piece of serialized data There are different types of versions for each type of data (GraphDef, etc.), but they all have the same common shape described here. |
VersionDefOrBuilder | |
VersionsProtos |
W
WatchdogConfig | Protobuf type tensorflow.WatchdogConfig
|
WatchdogConfig.Builder | Protobuf type tensorflow.WatchdogConfig
|
WatchdogConfigOrBuilder | |
WeakPointerScope | A minimalist pointer scope only keeping weak references to its elements. |
Where | Returns locations of nonzero / true values in a tensor. |
WhileContextDef | Protocol buffer representing a WhileContext object. |
WhileContextDef.Builder | Protocol buffer representing a WhileContext object. |
WhileContextDefOrBuilder | |
WholeFileReader | A Reader that outputs the entire contents of a file as a value. |
WholeFileReader.Options | Optional attributes for WholeFileReader
|
WindowDataset | Combines (nests of) input elements into a dataset of (nests of) windows. |
WorkerHealth | Current health status of a worker. |
WorkerHeartbeat | Worker heartbeat op. |
WorkerHeartbeatRequest | Protobuf type tensorflow.WorkerHeartbeatRequest
|
WorkerHeartbeatRequest.Builder | Protobuf type tensorflow.WorkerHeartbeatRequest
|
WorkerHeartbeatRequestOrBuilder | |
WorkerHeartbeatResponse | Protobuf type tensorflow.WorkerHeartbeatResponse
|
WorkerHeartbeatResponse.Builder | Protobuf type tensorflow.WorkerHeartbeatResponse
|
WorkerHeartbeatResponseOrBuilder | |
WorkerShutdownMode | Indicates the behavior of the worker when an internal error or shutdown signal is received. |
WrapDatasetVariant | |
WriteAudioSummary | Writes an audio summary. |
WriteAudioSummary.Options | Optional attributes for WriteAudioSummary
|
WriteFile | Writes contents to the file at input filename. |
WriteGraphSummary | Writes a graph summary. |
WriteHistogramSummary | Writes a histogram summary. |
WriteImageSummary | Writes an image summary. |
WriteImageSummary.Options | Optional attributes for WriteImageSummary
|
WriteRawProtoSummary | Writes a serialized proto summary. |
WriteScalarSummary | Writes a scalar summary. |
WriteSummary | Writes a tensor summary. |
X
Xdivy<T extends TType> | Returns 0 if x == 0, and x / y otherwise, elementwise. |
XEvent | An XEvent is a trace event, optionally annotated with XStats. |
XEvent.Builder | An XEvent is a trace event, optionally annotated with XStats. |
XEvent.DataCase | |
XEventMetadata | Metadata for an XEvent, corresponds to an event type and is shared by all XEvents with the same metadata_id. |
XEventMetadata.Builder | Metadata for an XEvent, corresponds to an event type and is shared by all XEvents with the same metadata_id. |
XEventMetadataOrBuilder | |
XEventOrBuilder | |
XlaRecvFromHost<T extends TType> | An op to receive a tensor from the host. |
XlaSendToHost | An op to send a tensor to the host. |
XlaSetBound | Set a bound for the given input value as a hint to Xla compiler,
returns the same value. |
XlaSpmdFullToShardShape<T extends TType> | An op used by XLA SPMD partitioner to switch from automatic partitioning to
manual partitioning. |
XlaSpmdShardToFullShape<T extends TType> | An op used by XLA SPMD partitioner to switch from manual partitioning to
automatic partitioning. |
XLine | An XLine is a timeline of trace events (XEvents). |
XLine.Builder | An XLine is a timeline of trace events (XEvents). |
XLineOrBuilder | |
Xlog1py<T extends TType> | Returns 0 if x == 0, and x * log1p(y) otherwise, elementwise. |
Xlogy<T extends TType> | Returns 0 if x == 0, and x * log(y) otherwise, elementwise. |
XPlane | An XPlane is a container of parallel timelines (XLines), generated by a profiling source or by post-processing one or more XPlanes. |
XPlane.Builder | An XPlane is a container of parallel timelines (XLines), generated by a profiling source or by post-processing one or more XPlanes. |
XPlaneOrBuilder | |
XPlaneProtos | |
XSpace | A container of parallel XPlanes, generated by one or more profiling sources. |
XSpace.Builder | A container of parallel XPlanes, generated by one or more profiling sources. |
XSpaceOrBuilder | |
XStat | An XStat is a named value associated with an XEvent, e.g., a performance counter value, a metric computed by a formula applied over nested XEvents and XStats. |
XStat.Builder | An XStat is a named value associated with an XEvent, e.g., a performance counter value, a metric computed by a formula applied over nested XEvents and XStats. |
XStat.ValueCase | |
XStatMetadata | Metadata for an XStat, corresponds to a stat type and is shared by all XStats with the same metadata_id. |
XStatMetadata.Builder | Metadata for an XStat, corresponds to a stat type and is shared by all XStats with the same metadata_id. |
XStatMetadataOrBuilder | |
XStatOrBuilder |
Z
Zeros<T extends TType> | Creates an Initializer that sets all values to zero. |
Zeros<T extends TType> | An operator creating a constant initialized with zeros of the shape given by `dims`. |
ZerosLike<T extends TType> | Returns a tensor of zeros with the same shape and type as x. |
Zeta<T extends TNumber> | Compute the Hurwitz zeta function \\(\zeta(x, q)\\). |
ZipDataset | Creates a dataset that zips together `input_datasets`. |