Class Index

A B C D E F G H I J K L M N O P Q R S T U V W X Z

アボート呼び出されたときに例外を発生させてプロセスを中止します。
中止オプションAbortのオプション属性
Abs <T extends TNumber >テンソルの絶対値を計算します。
抽象データバッファ<T>
AbstractDataBufferWindow <B extends DataBuffer <?>>
AbstractDenseNdArray <T, U はNdArray <T>> を拡張します
AbstractNdArray <T、U はNdArray <T>> を拡張します
AbstractTF_Buffer
抽象TF_グラフ
AbstractTF_ImportGraphDefOptions
AbstractTF_Session
AbstractTF_SessionOptions
抽象TF_ステータス
AbstractTF_Tensor
抽象TFE_コンテキスト
AbstractTFE_ContextOptions
抽象TFE_Op
AbstractTFE_TensorHandle
AccumulateN <T はTTypeを拡張 >テンソルのリストの要素ごとの合計を返します。
アキュムレータApplyGradient指定されたアキュムレータに勾配を適用します。
アキュムレータNumAccumulated指定されたアキュムレータに集約された勾配の数を返します。
アキュムレータセットグローバルステップアキュムレータを global_step の新しい値で更新します。
AccumulatorTakeGradient <T extends TType >指定された ConditionalAccumulator の平均勾配を抽出します。
Acos <T はTTypeを拡張 > x の acos を要素ごとに計算します。
Acosh <T はTTypeを拡張 > x の逆双曲線余弦を要素ごとに計算します。
アクティベーション<T extends TNumber >アクティベーションの抽象基本クラス

注: ERROR(/#tf)属性は、call メソッドを呼び出す前に設定する必要があります。

エイダデルタAdadelta アルゴリズムを実装するオプティマイザー。
アダグラードAdagrad アルゴリズムを実装するオプティマイザー。
アダグラッドDA Adagrad Dual-Averaging アルゴリズムを実装するオプティマイザー。
アダムAdam アルゴリズムを実装するオプティマイザー。
アダマックスAdamax アルゴリズムを実装するオプティマイザー。
<T extends TType >を追加しますx + y を要素ごとに返します。
AddManySparseToTensorsMap 「N」ミニバッチ「SparseTensor」を「SparseTensorsMap」に追加し、「N」ハンドルを返します。
AddManySparseToTensorsMap.Options AddManySparseToTensorsMapのオプションの属性
AddN <T はTTypeを拡張 >すべての入力テンソルを要素ごとに追加します。
SparseToTensorsMap を追加`SparseTensor` を `SparseTensorsMap` に追加すると、そのハンドルが返されます。
AddSparseToTensorsMap.Options AddSparseToTensorsMapのオプションの属性
AdjustContrast <T extends TNumber > 1 つまたは複数の画像のコントラストを調整します。
AdjustHue <T extends TNumber > 1 つまたは複数の画像の色相を調整します。
AdjustSaturation <T extends TNumber > 1 つまたは複数の画像の彩度を調整します。
全てテンソルの次元全体で要素の「論理積」を計算します。
すべてのオプションAllのオプションの属性
すべての候補者サンプラー学習されたユニグラム分布を使用して候補サンプリングのラベルを生成します。
AllCandidateSampler.Options AllCandidateSamplerのオプションの属性
割り当ての説明Protobuf 型tensorflow.AllocationDescription
AllocationDescription.Builder Protobuf 型tensorflow.AllocationDescription
割り当ての説明またはビルダー
割り当て説明プロトス
割り当て記録
 An allocation/de-allocation operation performed by the allocator. 
AllocationRecord.Builder
 An allocation/de-allocation operation performed by the allocator. 
割り当てレコードまたはビルダー
アロケータ使用済みメモリProtobuf 型tensorflow.AllocatorMemoryUsed
AllocatorMemory Used.Builder Protobuf 型tensorflow.AllocatorMemoryUsed
アロケータメモリ使用済みまたはビルダー
AllReduce <T extends TNumber >同じタイプと形状の複数のテンソルを相互に削減します。
AllReduce.オプションAllReduceのオプションの属性
AllToAll <T extends TType > TPU レプリカ間でデータを交換する Op。
角度<U はTNumberを延長 >複素数の引数を返します。
匿名反復子イテレータリソースのコンテナ。
匿名メモリキャッシュ
AnonymousMultiDeviceIteratorマルチデバイス反復子リソースのコンテナー。
匿名ランダムシードジェネレーター
匿名シードジェネレーター
どれでもテンソルの次元にわたる要素の「論理和」を計算します。
任意のオプションAnyのオプション属性
アピデフ
 Used to specify and override the default API & behavior in the
 generated code for client languages, from what you would get from
 the OpDef alone. 
ApiDef.Arg Protobuf 型tensorflow.ApiDef.Arg
ApiDef.Arg.Builder Protobuf 型tensorflow.ApiDef.Arg
ApiDef.ArgOrBuilder
APIDef.Attr
 Description of the graph-construction-time configuration of this
 Op. 
ApiDef.Attr.Builder
 Description of the graph-construction-time configuration of this
 Op. 
ApiDef.AttrOrBuilder
ApiDef.Builder
 Used to specify and override the default API & behavior in the
 generated code for client languages, from what you would get from
 the OpDef alone. 
ApiDef.エンドポイント
 If you specify any endpoint, this will replace all of the
 inherited endpoints. 
ApiDef.Endpoint.Builder
 If you specify any endpoint, this will replace all of the
 inherited endpoints. 
ApiDef.EndpointOrBuilder
ApiDef.Visibility Protobuf enum tensorflow.ApiDef.Visibility
ApiDefOrBuilder
ApiDefProtos
APIDefs Protobuf 型tensorflow.ApiDefs
ApiDefs.Builder Protobuf 型tensorflow.ApiDefs
APIDefsOrBuilder
applyAdadelta <T extends TType > adadelta スキームに従って「*var」を更新します。
Adadelta.Options の適用ApplyAdadeltaのオプションの属性
applyAdagrad <T はTTypeを拡張 > adagrad スキームに従って「*var」を更新します。
Adagrad.オプションの適用ApplyAdagradのオプションの属性
applyAdagradDa <T はTTypeを拡張 >近位の adagrad スキームに従って「*var」を更新します。
AdagradDa.Options の適用ApplyAdagradDaのオプションの属性
applyAdagradV2 <T はTTypeを拡張 > adagrad スキームに従って「*var」を更新します。
適用AdagradV2.オプションApplyAdagradV2のオプションの属性
applyAdam <T extends TType > Adam アルゴリズムに従って「*var」を更新します。
Adam.Options の適用ApplyAdamのオプションの属性
applyAdaMax <T はTTypeを拡張 > AdaMax アルゴリズムに従って「*var」を更新します。
AdaMax.Options の適用ApplyAdaMaxのオプションの属性
applyAddSign <T はTTypeを拡張 > AddSign の更新に従って「*var」を更新します。
applyAddSign.Options ApplyAddSignのオプションの属性
applyCenteredRmsProp <T はTTypeを拡張 >中心の RMSProp アルゴリズムに従って「*var」を更新します。
applyCenteredRmsProp.Options ApplyCenteredRmsPropのオプションの属性
applyFtrl <T はTTypeを拡張 > Ftrl-proximal スキームに従って「*var」を更新します。
適用Ftrl.オプションApplyFtrlのオプションの属性
applyGradientDescent <T extends TType > '*var' から 'alpha' * 'delta' を減算して更新します。
ApplyGradientDescent.Options ApplyGradientDescentのオプションの属性
applyMomentum <T はTTypeを拡張 >運動量スキームに従って「*var」を更新します。
モメンタムの適用オプションApplyMomentumのオプションの属性
applyPowerSign <T はTTypeを拡張 > AddSign の更新に従って「*var」を更新します。
applyPowerSign.Options ApplyPowerSignのオプションの属性
applyProximalAdagrad <T はTTypeを拡張 > Adagrad 学習率の FOBOS に従って「*var」と「*accum」を更新します。
applyProximalAdagrad.Options ApplyProximalAdagradのオプションの属性
applyProximalGradientDescent <T extends TType > 「*var」を固定学習率の FOBOS アルゴリズムとして更新します。
applyProximalGradientDescent.Options ApplyProximalGradientDescentのオプションの属性
applyRmsProp <T はTTypeを拡張 > RMSProp アルゴリズムに従って「*var」を更新します。
applyRmsProp.Options ApplyRmsPropのオプションの属性
ほぼ等しいabs(xy) < 許容誤差の要素ごとの真理値を返します。
近似等しいオプションApproximateEqualのオプションの属性
ArgMax <V はTNumberを拡張 >テンソルの次元全体で最大値を持つインデックスを返します。
ArgMin <V はTNumberを拡張 >テンソルの次元全体で最小値を持つインデックスを返します。
Asin <T extends TType > x の三角関数の逆サインを要素ごとに計算します。
Asinh <T はTTypeを拡張 > x の逆双曲線正弦を要素ごとに計算します。
AssertCardinalityDataset
AssertNextDataset次にどの変換が起こるかを表明する変換。
AssertNextDataset
アサートそれ指定された条件が true であることをアサートします。
AssertThat.オプションAssertThatのオプションの属性
アセットファイル定義
 An asset file def for a single file or a set of sharded files with the same
 name. 
AssetFileDef.Builder
 An asset file def for a single file or a set of sharded files with the same
 name. 
AssetFileDefOrBuilder
<T extends TType > を割り当てます「value」を代入して「ref」を更新します。
割り当てオプションAssignのオプション属性
AssignAdd <T extends TType > 「value」を追加して「ref」を更新します。
追加オプションの割り当てAssignAddのオプションの属性
AssignAddVariableOp変数の現在の値に値を追加します。
AssignSub <T はTTypeを拡張 > 'ref' から 'value' を減算して更新します。
サブオプションの割り当てAssignSubのオプションの属性
AssignSubVariableOp変数の現在の値から値を減算します。
変数の割り当て操作変数に新しい値を代入します。
文字列として指定されたテンソルの各エントリを文字列に変換します。
AsString.Options AsStringのオプションの属性
Atan <T はTTypeを拡張 > x の三角関数逆正接を要素ごとに計算します。
Atan2 <T はTNumberを拡張 >引数の符号を考慮して、「y/x」の逆正接を要素ごとに計算します。
アタン<T はTTypeを拡張 > x の逆双曲線正接を要素ごとに計算します。
属性値
 Protocol buffer representing the value for an attr used to configure an Op. 
AttrValue.Builder
 Protocol buffer representing the value for an attr used to configure an Op. 
AttrValue.ListValue
 LINT.IfChange
 
Protobuf 型tensorflow.AttrValue.ListValue
AttrValue.ListValue.Builder
 LINT.IfChange
 
Protobuf 型tensorflow.AttrValue.ListValue
AttrValue.ListValueOrBuilder
AttrValue.ValueCase
AttrValueOrBuilder
属性値プロトス
オーディオスペクトログラム時間の経過に伴うオーディオ データの視覚化を生成します。
AudioSpectrogram.オプションAudioSpectrogramのオプションの属性
オーディオ概要音声付きの「概要」プロトコル バッファを出力します。
Audiosummary.オプションAudioSummaryのオプションの属性
AutoParallelオプションProtobuf 型tensorflow.AutoParallelOptions
AutoParallelOptions.Builder Protobuf 型tensorflow.AutoParallelOptions
AutoParallelOptionsOrBuilder
AutoShardDataset入力データセットをシャーディングするデータセットを作成します。
AutoShardDataset入力データセットをシャーディングするデータセットを作成します。
AutoShardDataset.Options AutoShardDatasetのオプションの属性
AutoShardDataset.Options AutoShardDatasetのオプションの属性
利用可能なデバイス情報
 Matches DeviceAttributes
 
Protobuf 型tensorflow.AvailableDeviceInfo
利用可能なデバイス情報ビルダー
 Matches DeviceAttributes
 
Protobuf 型tensorflow.AvailableDeviceInfo
利用可能なデバイス情報またはビルダー
AvgPool <T はTNumberを拡張 >入力に対して平均プーリングを実行します。
AvgPool.オプションAvgPoolのオプションの属性
AvgPool3d <T はTNumberを拡張 >入力に対して 3D 平均プーリングを実行します。
AvgPool3d.オプションAvgPool3dのオプションの属性
AvgPool3dGrad <T はTNumberを拡張 >平均プーリング関数の勾配を計算します。
AvgPool3dGrad.オプションAvgPool3dGradのオプションの属性
AvgPoolGrad <T はTNumberを拡張 >平均プーリング関数の勾配を計算します。
AvgPoolGrad.オプションAvgPoolGradのオプションの属性

B

BandedTriangularSolve <T extends TType >
BandedTriangularSolve.Options BandedTriangularSolveのオプションの属性
BandPart <T はTTypeを拡張 >最も内側の各行列の中心バンドの外側をすべてゼロに設定するテンソルをコピーします。
バリア異なるグラフ実行にわたって持続するバリアを定義します。
バリアオプションBarrierのオプション属性
バリア閉じる指定されたバリアを閉じます。
BarrierClose.オプションBarrierCloseのオプションの属性
バリア不完全サイズ指定されたバリア内の不完全な要素の数を計算します。
バリア挿入多く各キーについて、指定されたコンポーネントにそれぞれの値を割り当てます。
バリアレディサイズ指定されたバリア内の完全な要素の数を計算します。
バリアテイクメニーバリアから指定された数の完了した要素を取得します。
BarrierTakeMany.オプションBarrierTakeManyのオプションの属性
BaseInitializer <T はTTypeを拡張 >すべてのイニシャライザの抽象基本クラス
バッチすべての入力テンソルを非決定的にバッチ処理します。
バッチオプションBatchのオプションの属性
BatchCholesky <T extends TNumber >
BatchCholeskyGrad <T extends TNumber >
バッチデータセット
バッチデータセット`input_dataset` から `batch_size` 要素をバッチ処理するデータセットを作成します。
BatchDataset.Options BatchDatasetのオプションの属性
バッチFft
バッチFft2d
バッチFft3d
バッチイフト
バッチIfft2d
バッチIfft3d
BatchMatMul <T はTTypeを拡張 > 2 つのテンソルのスライスをバッチで乗算します。
BatchMatMul.オプションBatchMatMulのオプションの属性
BatchMatrixBandPart <T はTTypeを拡張 >
BatchMatrixDeterminant <T extends TType >
BatchMatrixDiag <T はTTypeを拡張 >
BatchMatrixDiagPart <T はTTypeを拡張 >
BatchMatrixInverse <T extends TNumber >
BatchMatrixInverse.Options BatchMatrixInverseのオプションの属性
BatchMatrixSetDiag <T はTTypeを拡張 >
BatchMatrixSolve <T extends TNumber >
BatchMatrixSolve.オプションBatchMatrixSolveのオプションの属性
BatchMatrixSolveLs <T extends TNumber >
BatchMatrixSolveLs.オプションBatchMatrixSolveLsのオプションの属性
BatchMatrixTriangularSolve <T extends TNumber >
BatchMatrixTriangularSolve.Options BatchMatrixTriangularSolveのオプションの属性
BatchNormWithGlobalNormalization <T extends TType >バッチ正規化。
BatchNormWithGlobalNormalizationGrad <T extends TType >バッチ正規化のための勾配。
BatchSelfAdjointEig <T extends TNumber >
BatchSelfAdjointEig.Options BatchSelfAdjointEigのオプションの属性
BatchSvd <T はTTypeを拡張 >
BatchSvd.オプションBatchSvdのオプションの属性
BatchToSpace <T extends TType > T 型の 4 次元テンソルの BatchToSpace。
BatchToSpaceNd <T はTTypeを拡張 > T 型の ND テンソルの BatchToSpace。
ベンチマークエントリProtobuf 型tensorflow.BenchmarkEntries
BenchmarkEntries.Builder Protobuf 型tensorflow.BenchmarkEntries
ベンチマークエントリまたはビルダー
ベンチマークエントリー
 Each unit test or benchmark in a test or benchmark run provides
 some set of information. 
BenchmarkEntry.Builder
 Each unit test or benchmark in a test or benchmark run provides
 some set of information. 
BenchmarkEntryOrBuilder
BesselI0 <T はTNumberを拡張 >
BesselI0e <T はTNumberを拡張 >
BesselI1 <T はTNumberを拡張 >
BesselI1e <T はTNumberを拡張 >
BesselJ0 <T はTNumberを拡張 >
BesselJ1 <T はTNumberを拡張 >
BesselK0 <T はTNumberを拡張 >
BesselK0e <T はTNumberを拡張 >
BesselK1 <T はTNumberを拡張 >
BesselK1e <T はTNumberを拡張 >
BesselY0 <T はTNumberを拡張 >
BesselY1 <T はTNumberを拡張 >
Betainc <T extends TNumber >正規化された不完全ベータ積分を計算します \\(I_x(a, b)\\)。
Bfcメモリマッププロトス
Bfloat16レイアウト32 ビット浮動小数点数と 16 ビット浮動小数点数を変換し、仮数部を 7 ビットに切り捨てますが、同じバイアスで 8 ビットの指数を保持するデータ レイアウト。
BiasAdd <T extends TType > 「値」に「バイアス」を追加します。
BiasAdd.オプションBiasAddのオプションの属性
BiasAddGrad <T はTTypeを拡張 > 「バイアス」テンソルに対する「BiasAdd」の逆方向操作。
BiasAddGrad.Options BiasAddGradのオプションの属性
バイナリクロセントロピー真のラベルと予測されたラベル間のクロスエントロピー損失を計算します。
BinaryCrossentropy <T extends TNumber >真のラベルと予測されたラベル間のバイナリ クロス エントロピー損失を計算するメトリック。
ビンカウント<T extends TNumber >整数配列内の各値の出現数をカウントします。
ビンの概要Protobuf 型tensorflow.BinSummary
Binsummary.Builder Protobuf 型tensorflow.BinSummary
ビンの概要またはビルダー
ビットキャスト<U はTTypeを拡張 >データをコピーせずに、ある型から別の型にテンソルをビットキャストします。
BitwiseAnd <T extends TNumber > Elementwise は、「x」と「y」のビット単位の AND を計算します。
BitwiseOr <T extends TNumber > Elementwise は、「x」と「y」のビット単位の OR を計算します。
BitwiseXor <T extends TNumber > Elementwise は、「x」と「y」のビットごとの XOR を計算します。
BlockLSTM <T はTNumberを拡張 >すべてのタイム ステップについて LSTM セルの順方向伝播を計算します。
BlockLSTM.オプションBlockLSTMのオプションの属性
BlockLSTMGrad <T extends TNumber >時系列全体に対する LSTM セルの逆方向伝播を計算します。
ブールデータバッファブール値のDataBuffer
BooleanDataLayout <S extends DataBuffer <?>>バッファーに格納されたデータをブール値に変換するDataLayout
BooleanDenseNdArray
ブールマスク
BooleanMask.Options BooleanMaskのオプションの属性
ブールマスク更新
BooleanMaskUpdate.Options BooleanMaskUpdateのオプションの属性
ブール値NdArrayブール値のNdArray
ブールレイアウトブール値をバイトに変換するデータ レイアウト。
BoostedTrees集計統計バッチの蓄積された統計の概要を集計します。
ブーストツリーバケット化バケット境界に基づいて各機能をバケット化します。
BoostedTrees計算BestFeature分割各特徴のゲインを計算し、その特徴に対して可能な限り最適な分割情報を返します。
BoostedTreesCalculateBestFeatureSplit.Options BoostedTreesCalculateBestFeatureSplitのオプションの属性
BoostedTrees計算BestFeatureSplitV2各機能のゲインを計算し、各ノードについて可能な限り最適な分割情報を返します。
BoostedTrees計算BestGainsPereture各特徴のゲインを計算し、その特徴に対して可能な限り最適な分割情報を返します。
ブーストツリーセンターバイアストレーニング データから事前分布 (バイアス) を計算し、最初のノードにロジットの事前分布を入力します。
ブーストツリー作成アンサンブルツリー アンサンブル モデルを作成し、そのモデルへのハンドルを返します。
BoostedTreesCreateQuantileStreamResource分位数ストリームのリソースを作成します。
BoostedTreesCreateQuantileStreamResource.Options BoostedTreesCreateQuantileStreamResourceのオプションの属性
BoostedTreesDeserializeアンサンブルシリアル化されたツリー アンサンブル構成を逆シリアル化し、現在のツリーを置き換えます。

アンサンブル。

BoostedTreesアンサンブルリソースハンドルOp BoostedTreesEnsembleResource へのハンドルを作成します
BoostedTreesEnsembleResourceHandleOp.Options BoostedTreesEnsembleResourceHandleOpのオプションの属性
ブーストツリーの例デバッグ出力各例のデバッグ/モデルの解釈可能性の出力。
BoostedTreesFlushQuantileサマリー各分位ストリーム リソースから分位サマリーをフラッシュします。
BoostedTreesGetEnsembleStatesツリー アンサンブル リソース スタンプ トークン、ツリーの数、および成長統計を取得します。
BoostedTreesMakeQuantile要約バッチの分位数の要約を作成します。
BoostedTreesMakeStats概要バッチの蓄積された統計の概要を作成します。
ブーストツリー予測入力インスタンスに対して複数の加法回帰アンサンブル予測子を実行し、

ロジットを計算します。

BoostedTreesQuantileStreamResourceAddSummaries分位値の要約を各分位値ストリーム リソースに追加します。
BoostedTreesQuantileStreamResourceDeserializeバケット境界と準備完了フラグを現在の QuantileAccumulator に逆シリアル化します。
BoostedTreesQuantileStreamリソースフラッシュ分位点ストリーム リソースの概要をフラッシュします。
BoostedTreesQuantileStreamResourceFlush.Options BoostedTreesQuantileStreamResourceFlushのオプションの属性
BoostedTreesQuantileStreamResourceGetBucketBoundaries蓄積されたサマリーに基づいて、各フィーチャのバケット境界を生成します。
BoostedTreesQuantileStreamResourceHandleOp BoostedTreesQuantileStreamResource へのハンドルを作成します。
BoostedTreesQuantileStreamResourceHandleOp.Options BoostedTreesQuantileStreamResourceHandleOpのオプションの属性
BoostedTreesSerializeアンサンブルツリー アンサンブルをプロトにシリアル化します。
BoostedTreesSparseAggregateStatsバッチの蓄積された統計の概要を集計します。
ブーストツリースパース計算ベスト機能スプリット各特徴のゲインを計算し、その特徴に対して可能な限り最適な分割情報を返します。
BoostedTreesSparseCalculateBestFeatureSplit.Options BoostedTreesSparseCalculateBestFeatureSplitのオプション属性
ブーストツリートレーニング予測入力インスタンスに対して複数の加法回帰アンサンブル予測子を実行し、

キャッシュされたロジットの更新を計算します。

BoostedTreesUpdateEnsemble成長している最後のツリーにレイヤーを追加することによって、ツリー アンサンブルを更新します。

または、新しいツリーを開始します。

BoostedTreesUpdateEnsembleV2成長している最後のツリーにレイヤーを追加して、ツリー アンサンブルを更新します。

または、新しいツリーを開始します。

BoostedTreesUpdateEnsembleV2.オプションBoostedTreesUpdateEnsembleV2のオプションの属性
BoundedTensorSpecProto
 A protobuf to represent tf.BoundedTensorSpec. 
BoundedTensorSpecProto.Builder
 A protobuf to represent tf.BoundedTensorSpec. 
BoundedTensorSpecProtoOrBuilder
BroadcastDynamicShape <T extends TNumber > s0 op s1 の形状をブロードキャストで返します。
BroadcastGradientArgs <T extends TNumber >ブロードキャストで s0 op s1 の勾配を計算するためのリダクション インデックスを返します。
BroadcastHelper <T はTTypeを拡張 > XLA スタイルのブロードキャストを実行するためのヘルパー オペレーター

二項演算子に対する XLA のブロードキャスト ルールを使用して、'lhs' と 'rhs' のランクが低い方にサイズ 1 の次元を追加することにより、'lhs' と 'rhs' を同じランクにブロードキャストします。

BroadcastRecv <T はTTypeを拡張 >別のデバイスからブロードキャストされたテンソル値を受信します。
ブロードキャスト受信オプションBroadcastRecvのオプションの属性
BroadcastSend <T はTTypeを拡張 >テンソル値を 1 つ以上の他のデバイスにブロードキャストします。
BroadcastSend.オプションBroadcastSendのオプションの属性
BroadcastTo <T extends TType >互換性のある形状の配列をブロードキャストします。
バケット化「境界」に基づいて「入力」をバケット化します。
ビルド構成Protobuf 型tensorflow.BuildConfiguration
BuildConfiguration.Builder Protobuf 型tensorflow.BuildConfiguration
ビルド構成またはビルダー
バンドルエントリープロト
 Describes the metadata related to a checkpointed tensor. 
BundleEntryProto.Builder
 Describes the metadata related to a checkpointed tensor. 
BundleEntryProtoOrBuilder
バンドルヘッダープロト
 Special header that is associated with a bundle. 
BundleHeaderProto.Builder
 Special header that is associated with a bundle. 
BundleHeaderProto.Endianness
 An enum indicating the endianness of the platform that produced this
 bundle. 
バンドルヘッダープロトまたはビルダー
バイトデータバッファバイトのDataBuffer
ByteDataLayout <S extends DataBuffer <?>>バッファーに格納されたデータをバイトに変換するDataLayout
ByteDenseNdArray
ByteNDArrayバイトのNdArray
ByteSequenceProvider <T> ByteSequenceTensorBufferに格納されるバイトのシーケンスを生成します。
ByteSequenceTensorBuffer文字列テンソルデータを保存するためのバッファ。
バイトリスト
 Containers to hold repeated fundamental values. 
BytesList.Builder
 Containers to hold repeated fundamental values. 
BytesListOrBuilder
BytesProducedStatsDataset StatsAggregator の `input_dataset` の各要素のバイト サイズを記録します。
BytesProducedStatsDataset StatsAggregator の `input_dataset` の各要素のバイト サイズを記録します。

C

キャッシュデータセット`input_dataset` から要素をキャッシュするデータセットを作成します。
キャッシュデータセットV2
呼び出し可能なオプション
 Defines a subgraph in another `GraphDef` as a set of feed points and nodes
 to be fetched or executed. 
CallableOptions.Builder
 Defines a subgraph in another `GraphDef` as a set of feed points and nodes
 to be fetched or executed. 
CallableOptionsOrBuilder
キャスト<U extends TType > SrcT 型の x を DstT の y にキャストします。
キャストオプションCastのオプションの属性
キャストヘルパーオペランドをキャストするためのヘルパー クラス
カテゴリクロセントロピーラベルと予測の間のクロスエントロピー損失を計算します。
CategoricalCrossentropy <T extends TNumber >真のラベルと予測されたラベル間のカテゴリカルなクロスエントロピー損失を計算するメトリック。
カテゴリカルヒンジラベルと予測の間のカテゴリカル ヒンジ損失を計算します。
CategoricalHinge <T extends TNumber >ラベルと予測の間のカテゴリカル ヒンジ損失メトリックを計算するメトリック。
Ceil <T extends TNumber > x 以上の要素ごとの最小の整数を返します。
CheckNumerics <T extends TNumber >テンソルの NaN、-Inf、+Inf 値をチェックします。
Cholesky <T はTTypeを拡張 > 1 つ以上の正方行列のコレスキー分解を計算します。
CholeskyGrad <T extends TNumber >コレスキー アルゴリズムの逆伝搬モードの逆伝播勾配を計算します。
最速のデータセットを選択してください
最速のデータセットを選択してください
ClipByValue <T はTTypeを拡張 >テンソル値を指定された最小値と最大値にクリップします。
閉じる概要ライター
クラスター定義
 Defines a TensorFlow cluster as a set of jobs. 
ClusterDef.Builder
 Defines a TensorFlow cluster as a set of jobs. 
ClusterDefOrBuilder
クラスターデバイスフィルター
 Defines the device filters for jobs in a cluster. 
ClusterDeviceFilters.Builder
 Defines the device filters for jobs in a cluster. 
ClusterDeviceFiltersOrBuilder
ClusterOutput <T extends TType > XLA 計算の出力を他のコンシューマー グラフ ノードに接続する演算子。
クラスタープロトス
コード
 The canonical error codes for TensorFlow APIs. 
コードの場所
 Code location information: A stack trace with host-name information. 
コードロケーションビルダー
 Code location information: A stack trace with host-name information. 
コード場所またはビルダー
コレクション定義
 CollectionDef should cover most collections. 
CollectionDef.AnyList
 AnyList is used for collecting Any protos. 
CollectionDef.AnyList.Builder
 AnyList is used for collecting Any protos. 
CollectionDef.AnyListOrBuilder
コレクション定義ビルダー
 CollectionDef should cover most collections. 
CollectionDef.BytesList
 BytesList is used for collecting strings and serialized protobufs. 
CollectionDef.BytesList.Builder
 BytesList is used for collecting strings and serialized protobufs. 
CollectionDef.BytesListOrBuilder
CollectionDef.FloatList
 FloatList is used for collecting float values. 
CollectionDef.FloatList.Builder
 FloatList is used for collecting float values. 
CollectionDef.FloatListOrBuilder
CollectionDef.Int64List
 Int64List is used for collecting int, int64 and long values. 
CollectionDef.Int64List.Builder
 Int64List is used for collecting int, int64 and long values. 
CollectionDef.Int64ListOrBuilder
コレクションDef.KindCase
CollectionDef.NodeList
 NodeList is used for collecting nodes in graph. 
CollectionDef.NodeList.Builder
 NodeList is used for collecting nodes in graph. 
CollectionDef.NodeListOrBuilder
コレクション定義またはビルダー
CollectiveGather <T extends TNumber >同じタイプと形状の複数のテンソルを相互に蓄積します。
CollectiveGather.オプションCollectiveGatherのオプションの属性
CollectivePermute <T extends TType >レプリケートされた TPU インスタンス全体でテンソルを並べ替える Op。
複合非最大抑制スコアの降順で境界ボックスのサブセットを貪欲に選択します。

この操作は、すべてのクラスにわたって、バッチごとの入力に対して non_max_suppression を実行します。

CombinedNonMaxSuppression.Options CombinedNonMaxSuppressionのオプションの属性
コミットID Protobuf 型tensorflow.CommitId
CommitId.Builder Protobuf 型tensorflow.CommitId
CommitId.KindCase
コミットIdOrBuilder
比較とビットパック「input」の値を「threshold」と比較し、結果のビットを「uint8」にパックします。
コンパイル結果TPU コンパイルの結果を返します。
コンパイル成功アサートコンパイルが成功したことをアサートします。
複合<U はTTypeを拡張 > 2 つの実数を複素数に変換します。
ComplexAbs <U はTNumberを拡張 >テンソルの複素絶対値を計算します。
要素の圧縮データセット要素を圧縮します。
Compute_func_Pointer_TF_OpKernelContext
偶発的ヒットを計算するtrue_labels に一致する、sampled_candidates 内の位置の ID を計算します。
ComputeAccidentalHits.Options ComputeAccidentalHitsのオプションの属性
バッチサイズの計算部分的なバッチを除いたデータセットの静的なバッチ サイズを計算します。
Concat <T extends TType >テンソルを 1 次元に沿って連結します。
データセットを連結する「input_dataset」と「another_dataset」を連結したデータセットを作成します。
具体的な関数入力および出力のシグネチャを使用して、単一の関数として呼び出すことができるグラフ。
CondContextDef
 Protocol buffer representing a CondContext object. 
CondContextDef.Builder
 Protocol buffer representing a CondContext object. 
CondContextDefOrBuilder
条件付きアキュムレータ勾配を集約するための条件付きアキュムレータ。
ConditionalAccumulator.オプションConditionalAccumulatorのオプションの属性
コンフィグプロト
 Session configuration parameters. 
ConfigProto.Builder
 Session configuration parameters. 
ConfigProto.Experimental
 Everything inside Experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat. 
ConfigProto.Experimental.Builder
 Everything inside Experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat. 
ConfigProto.Experimental.MlirBridgeRollout
 An enum that describes the state of the MLIR bridge rollout. 
ConfigProto.ExperimentalOrBuilder
ConfigProtoOrBuilder
構成プロトス
分散型 TPU の構成分散 TPU システムの集中構造をセットアップします。
DistributedTPU.Options の構成ConfigureDistributedTPUのオプションの属性
TPU埋め込みの構成分散 TPU システムで TPUEmbedding をセットアップします。
Conj <T extends TType >複素数の複素共役を返します。
ConjugateTranspose <T extends TType >順列に従って x の次元をシャッフルし、結果を共役させます。
定数<T extends TType >定数値を持つテンソルを生成するイニシャライザ。
定数<T extends TType >定数値を生成する演算子。
制約制約の基本クラス。
MutexLock の消費この操作は、「MutexLock」によって作成されたロックを消費します。
ControlFlowContextDef
 Container for any kind of control flow context. 
ControlFlowContextDef.Builder
 Container for any kind of control flow context. 
ControlFlowContextDef.CtxtCase
ControlFlowContextDefOrBuilder
コントロールフロープロトス
コントロールトリガー何もしません。
Conv <T extends TType > XLA ConvGeneralDirated 演算子をラップします。ドキュメントは次のとおりです。

https://www.tensorflow.org/performance/xla/operation_semantics#conv_convolution 。

Conv2d <T はTNumberを拡張 > 4 次元の「入力」テンソルと「フィルター」テンソルを指定して 2 次元の畳み込みを計算します。
Conv2d.オプションConv2dのオプションの属性
Conv2dBackpropFilter <T extends TNumber >フィルターに関する畳み込みの勾配を計算します。
Conv2dBackpropFilter.Options Conv2dBackpropFilterのオプションの属性
Conv2dBackpropInput <T extends TNumber >入力に対する畳み込みの勾配を計算します。
Conv2dBackpropInput.Options Conv2dBackpropInputのオプションの属性
Conv3d <T はTNumberを拡張 > 5 次元の「入力」テンソルと「フィルター」テンソルを指定して 3 次元畳み込みを計算します。
Conv3d.オプションConv3dのオプションの属性
Conv3dBackpropFilter <T extends TNumber >フィルターに関する 3-D 畳み込みの勾配を計算します。
Conv3dBackpropFilter.Options Conv3dBackpropFilterのオプションの属性
Conv3dBackpropInput <U はTNumberを拡張 >入力に対する 3-D 畳み込みの勾配を計算します。
Conv3dBackpropInput.Options Conv3dBackpropInputのオプションの属性
コピー<T extends TType > CPU から CPU へ、または GPU から GPU へテンソルをコピーします。
コピー.オプションCopyのオプション属性
CopyHost <T はTTypeを拡張 >テンソルをホストにコピーします。
コピーホストのオプションCopyHostのオプションの属性
Cos <T はTTypeを拡張 > x の cos を要素ごとに計算します。
Cosh <T はTTypeを拡張 > x の双曲線余弦を要素ごとに計算します。
コサイン類似度ラベルと予測の間のコサイン類似度を計算します。
CosineSimilarity <T extends TNumber >ラベルと予測の間のコサイン類似性メトリックを計算するメトリック。
コストグラフ定義Protobuf 型tensorflow.CostGraphDef
CostGraphDef.AggregatedCost
 Total cost of this graph, typically used for balancing decisions. 
CostGraphDef.AggregatedCost.Builder
 Total cost of this graph, typically used for balancing decisions. 
CostGraphDef.AggregatedCostOrBuilder
CostGraphDef.Builder Protobuf 型tensorflow.CostGraphDef
CostGraphDef.Node Protobuf 型tensorflow.CostGraphDef.Node
CostGraphDef.Node.Builder Protobuf 型tensorflow.CostGraphDef.Node
CostGraphDef.Node.InputInfo
 Inputs of this node. 
CostGraphDef.Node.InputInfo.Builder
 Inputs of this node. 
CostGraphDef.Node.InputInfoOrBuilder
CostGraphDef.Node.OutputInfo
 Outputs of this node. 
CostGraphDef.Node.OutputInfo.Builder
 Outputs of this node. 
CostGraphDef.Node.OutputInfoOrBuilder
CostGraphDef.NodeOrBuilder
コストグラフ定義またはビルダー
コストグラフプロトス
CountUpTo <T extends TNumber > 「limit」に達するまで「ref」をインクリメントします。
CPU情報Protobuf 型tensorflow.CPUInfo
CPU情報ビルダーProtobuf 型tensorflow.CPUInfo
CPU情報またはビルダー
Create_func_TF_OpKernelConstruction
概要DbWriterの作成
サマリーファイルライターの作成
切り抜きとサイズ変更入力画像テンソルからクロップを抽出し、サイズを変更します。
CropAndResize.Options CropAndResizeのオプションの属性
GradBoxの切り抜きとサイズ変更入力ボックスのテンソルに対する Crop_and_resize オペレーションの勾配を計算します。
CropAndResizeGradBoxes.Options CropAndResizeGradBoxesのオプションの属性
CropAndResizeGradImage <T extends TNumber >入力イメージ テンソルに対する Crop_and_resize オペレーションの勾配を計算します。
CropAndResizeGradImage.Options CropAndResizeGradImageのオプションの属性
Cross <T extends TNumber >ペアごとの外積を計算します。
CrossReplicaSum <T extends TNumber >レプリケートされた TPU インスタンス全体の入力を合計する Op。
CSRSparseMatrixComponents <T はTTypeを拡張 > CSR コンポーネントをバッチ `index` で読み取ります。
CSRSparseMatrixToDense <T extends TType > (おそらくバッチ処理された) CSRSparseMatrix を密に変換します。
CSRSparseMatrixToSparseTensor <T extends TType > (おそらくバッチ処理された) CSRSparesMatrix を SparseTensor に変換します。
CSVデータセット
CSVデータセット
CSVデータセットV2
CtcBeamSearchDecoder <T はTNumberを拡張 >入力で指定されたロジットに対してビーム検索デコードを実行します。
CtcBeamSearchDecoder.オプションCtcBeamSearchDecoderのオプションの属性
CtcGreedyDecoder <T はTNumberを拡張 >入力で指定されたロジットに対して貪欲なデコードを実行します。
CtcGreedyDecoder.オプションCtcGreedyDecoderのオプションの属性
CtcLoss <T はTNumberを拡張 >各バッチエントリの CTC 損失 (対数確率) を計算します。
CtcLoss.オプションCtcLossのオプションの属性
CTCLossV2各バッチエントリの CTC 損失 (対数確率) を計算します。
CTCLossV2.オプションCTCLossV2のオプションの属性
CudnnRNN <T はTNumberを拡張 > cuDNN によってサポートされる RNN。
CudnnRNN.オプションCudnnRNNのオプションの属性
CudnnRNNBackprop <T はTNumberを拡張 > CudnnRNNV3 のバックプロップ ステップ。
CudnnRNNBackprop.Options CudnnRNNBackpropのオプションの属性
CudnnRNNCanonicalToParams <T extends TNumber > CudnnRNN パラメータを正規形式から使用可能な形式に変換します。
CudnnRNNCanonicalToParams.Options CudnnRNNCanonicalToParamsのオプションの属性
CudnnRnnParamsSize <U はTNumberを拡張 > Cudnn RNN モデルで使用できる重みのサイズを計算します。
CudnnRnnParamsSize.Options CudnnRnnParamsSizeのオプションの属性
CudnnRNNParamsToCanonical <T extends TNumber > CudnnRNN パラメータを正規形式で取得します。
CudnnRNNParamsToCanonical.Options CudnnRNNParamsToCanonicalのオプション属性
Cumprod <T はTTypeを拡張 > `axis` に沿ったテンソル `x` の累積積を計算します。
Cumprod.オプションCumprodのオプションの属性
Cumsum <T extends TType > `axis` に沿ったテンソル `x` の累積和を計算します。
合計オプションCumsumのオプションの属性
CumulativeLogsumexp <T extends TNumber > `axis` に沿ったテンソル `x` の累積積を計算します。
CumulativeLogsumexp.オプションCumulativeLogsumexpのオプションの属性

D

データバッファ<T>特定のタイプのデータのコンテナー。
データバッファアダプターファクトリーデータバッファアダプターの工場。
データバッファDataBufferインスタンスを作成するためのヘルパー クラス。
DataBufferWindow <B extends DataBuffer <?>> DataBufferの一部を表示するための変更可能なコンテナー。
データクラスProtobuf enum tensorflow.DataClass
DataFormatDimMap <T extends TNumber >指定された宛先データ形式でディメンション インデックスを返します。

ソースデータ形式。

DataFormatDimMap.Options DataFormatDimMapのオプションの属性
DataFormatVecPermute <T extends TNumber >入力テンソルを `src_format` から `dst_format` に並べ替えます。
DataFormatVecPermute.Options DataFormatVecPermuteのオプションの属性
DataLayout <S extends DataBuffer <?>, T>バッファに格納されているデータを指定された型に変換します。
データレイアウト線形代数計算で頻繁に使用されるデータ形式のDataLayoutインスタンスを公開します。
データサービスデータセット
DataServiceDataset.Options DataServiceDatasetのオプションの属性
データセット独立した要素 (サンプル) の潜在的に大規模なリストを表し、これらの要素間で反復と変換を実行できるようにします。
データセットのカーディナリティ「input_dataset」のカーディナリティを返します。
データセットのカーディナリティ「input_dataset」のカーディナリティを返します。
データセットからグラフ指定された `graph_def` からデータセットを作成します。
データセット反復子tf.data データセットによる反復の状態を表します。
データセットオプションオプションは、データセットの終わりに達したときに失敗する可能性があるデータセットの getNext 操作の結果を表します。
データセットからグラフへ「input_dataset」を表すシリアル化された GraphDef を返します。
DatasetToGraph.Options DatasetToGraphのオプションの属性
データセットから単一要素へ指定されたデータセットから単一の要素を出力します。
データセットからTfRecordまでTFRecord 形式を使用して、指定されたデータセットを指定されたファイルに書き込みます。
データセットからTFレコードへTFRecord 形式を使用して、指定されたデータセットを指定されたファイルに書き込みます。
データストレージビジター<R> DataBufferインスタンスのバッキング ストレージにアクセスします。
データ型
 (== suppress_warning documentation-presence ==)
 LINT.IfChange
 
Protobuf enum tensorflow.DataType
Dawsn <T はTNumberを拡張 >
Deallocator_Pointer_long_Pointer
デバッグイベント
 An Event related to the debugging of a TensorFlow program. 
DebugEvent.Builder
 An Event related to the debugging of a TensorFlow program. 
DebugEvent.WhatCase
デバッグイベントまたはビルダー
デバッグイベントプロトス
デバッグされたデバイス
 A device on which ops and/or tensors are instrumented by the debugger. 
DebuggedDevice.Builder
 A device on which ops and/or tensors are instrumented by the debugger. 
デバッグされたデバイスまたはビルダー
デバッグされたグラフ
 A debugger-instrumented graph. 
DebuggedGraph.Builder
 A debugger-instrumented graph. 
デバッグされたグラフまたはビルダー
デバッグされたソースファイルProtobuf 型tensorflow.DebuggedSourceFile
DebuggedSourceFile.Builder Protobuf 型tensorflow.DebuggedSourceFile
デバッグされたソースファイルまたはビルダー
デバッグされたソースファイルProtobuf 型tensorflow.DebuggedSourceFiles
DebuggedSourceFiles.Builder Protobuf 型tensorflow.DebuggedSourceFiles
デバッグされたソースファイルまたはビルダー
DebugGradientIdentity <T extends TType >勾配デバッグ用の ID 演算。
DebugGradientRefIdentity <T extends TType >勾配デバッグ用の ID 演算。
DebugIdentity <T はTTypeを拡張 >デバッグ Identity V2 Op.
DebugIdentity.Options DebugIdentityのオプションの属性
デバッグメタデータ
 Metadata about the debugger and the debugged TensorFlow program. 
DebugMetadata.Builder
 Metadata about the debugger and the debugged TensorFlow program. 
デバッグメタデータまたはビルダー
デバッグナンカウントNaN 値カウンター操作のデバッグ
DebugNanCount.オプションDebugNanCountのオプションの属性
DebugNumericssummary <U はTNumberを拡張 >デバッグ数値概要 V2 Op.
DebugNumericssummary.Options DebugNumericsSummaryのオプションの属性
デバッグオプション
 Options for initializing DebuggerState in TensorFlow Debugger (tfdbg). 
DebugOptions.Builder
 Options for initializing DebuggerState in TensorFlow Debugger (tfdbg). 
デバッグオプションまたはビルダー
デバッグプロトス
デバッグTensorWatch
 Option for watching a node in TensorFlow Debugger (tfdbg). 
DebugTensorWatch.Builder
 Option for watching a node in TensorFlow Debugger (tfdbg). 
デバッグTensorWatchOrBuilder
デコードとクロップJpeg JPEG エンコードされたイメージを uint8 テンソルにデコードしてトリミングします。
DecodeAndCropJpeg.Options DecodeAndCropJpegのオプションの属性
DecodeBase64 Web セーフな Base64 エンコード文字列をデコードします。
デコードBmp BMP でエンコードされたイメージの最初のフレームを uint8 テンソルにデコードします。
DecodeBmp.オプションDecodeBmpのオプションの属性
デコード圧縮文字列を解凍します。
DecodeCompressed.Options DecodeCompressedのオプションの属性
CsvをデコードするCSV レコードをテンソルに変換します。
DecodeCsv.オプションDecodeCsvのオプションの属性
デコードGIF GIF エンコードされた画像のフレームを uint8 テンソルにデコードします。
DecodeImage <T extends TNumber > decode_bmp、decode_gif、decode_jpeg、decode_png の関数。
デコードイメージのオプションDecodeImageのオプションの属性
デコードJpeg JPEG エンコードされたイメージを uint8 テンソルにデコードします。
DecodeJpeg.オプションDecodeJpegのオプションの属性
DecodeJsonExample JSON エンコードされたサンプル レコードをバイナリ プロトコル バッファ文字列に変換します。
DecodePaddedRaw <T extends TNumber >文字列のバイトを数値のベクトルとして再解釈します。
DecodePaddedRaw.Options DecodePaddedRawのオプションの属性
DecodePng <T extends TNumber > PNG エンコードされたイメージを uint8 または uint16 テンソルにデコードします。
DecodePng.オプションDecodePngのオプションの属性
デコードプロトこの操作は、シリアル化されたプロトコル バッファー メッセージからフィールドをテンソルに抽出します。
DecodeProto.オプションDecodeProtoのオプションの属性
DecodeRaw <T はTTypeを拡張 >文字列のバイトを数値のベクトルとして再解釈します。
DecodeRaw.オプションDecodeRawのオプションの属性
デコードWav 16 ビット PCM WAV ファイルを浮動小数点テンソルにデコードします。
デコードWav.オプションDecodeWavのオプションの属性
DeepCopy <T はTTypeを拡張 > `x` のコピーを作成します。
削除機能ポインタ
反復子の削除イテレータリソースのコンテナ。
メモリキャッシュの削除
削除MultiDeviceIteratorイテレータリソースのコンテナ。
ランダムシードジェネレーターの削除
シードジェネレータの削除
セッションテンソルの削除セッション内のハンドルで指定されたテンソルを削除します。
DenseBincount <U はTNumberを拡張 >整数配列内の各値の出現数をカウントします。
DenseBincount.オプションDenseBincountのオプションの属性
DenseCountSparseOutput <U はTNumberを拡張 > tf.tensor 入力のスパース出力ビン カウントを実行します。
DenseCountSparseOutput.Options DenseCountSparseOutputのオプションの属性
DenseNdArray <T>
DenseToCSRSparseMatrix密なテンソルを (おそらくバッチ化された) CSRSparseMatrix に変換します。
DenseToDenseSetOperation <T extends TType > 2 つの `Tensor` 入力の最後の次元に沿って集合演算を適用します。
DenseToDenseSetOperation.Options DenseToDenseSetOperationのオプションの属性
DenseToSparseBatchDataset入力要素を SparseTensor にバッチ処理するデータセットを作成します。
DenseToSparseBatchDataset入力要素を SparseTensor にバッチ処理するデータセットを作成します。
DenseToSparseSetOperation <T extends TType > `Tensor` と `SparseTensor` の最後の次元に沿って集合演算を適用します。
DenseToSparseSetOperation.Options DenseToSparseSetOperationのオプションの属性
DepthToSpace <T extends TType > T 型のテンソルの DepthToSpace。
DepthToSpace.オプションDepthToSpaceのオプションの属性
DepthwiseConv2dNative <T extends TNumber > 4-D「入力」と「フィルター」テンソルを与えられた2次元深度畳み込みを計算します。
depthwiseconv2dnative.options DepthwiseConv2dNativeのオプション属性
depthwiseconv2dnativebackpropfilter <t tnumber >フィルターに対して深さごとの畳み込みの勾配を計算します。
depthwiseconv2dnativebackpropfilter.options DepthwiseConv2dNativeBackpropFilterのオプション属性
depthwiseconv2dnativebackpropinput <t tnumber >入力に対する深さごとの畳み込みの勾配を計算します。
depthwiseconv2dnativebackpropinput.options DepthwiseConv2dNativeBackpropInputのオプション属性
dequantize <uはtnumber >を拡張します「入力」テンソルをフロートまたはBFLOAT16テンソルに定量化します。
不安定梱包されたUINT32入力を取り、UINT8に入力を開梱して行う

デバイス上のデコンティング。

dequantize.options Dequantizeのオプションの属性
Deserializeiterator指定されたバリアントテンソルをイテレーターに変換し、指定されたリソースに保存します。
DeserializeManysParse <t ttype >シリアル化されたミニバッチから「sparsetEnsors」を脱色し、連結します。
DeserializeSparse <uはttype >を拡張します「sparsetEnsor」オブジェクトをaserializeします。
DestroyResourceopハンドルで指定されたリソースを削除します。
DestroyResourceop.options DestroyResourceOpのオプションの属性
DesistTemporaryVariaible <t拡張ttype >一時変数を破棄し、その最終値を返します。
ttype >を拡張します1つ以上の正方形マトリックスの決定要因を計算します。
デバイス属性Protobuf 型tensorflow.DeviceAttributes
DeviceAttributes.Builder Protobuf 型tensorflow.DeviceAttributes
DeviceAttributeSorbuilder
DeviceAttributesprotos
devicefiltersprotos
デバイスインデックス操作が実行されるデバイスのインデックスを返します。
逸脱性Protobuf Type tensorflow.DeviceLocality
DeviceLocality.Builder Protobuf Type tensorflow.DeviceLocality
DeviceLocalityOrbuilder
DeviceProperties protobufタイプtensorflow.DeviceProperties
DeviceProperties.Builder protobufタイプtensorflow.DeviceProperties
DevicePropertiesOrbuilder
devicepropertiesprotos
DevicesPec Tensorflowデバイスの(おそらく部分的な)仕様を表します。
devicespec.builder DeviceSpecクラスの構築用ビルダークラス。
devicespec.deviceType
devicestepstats protobufタイプtensorflow.DeviceStepStats
devicestepstats.builder protobufタイプtensorflow.DeviceStepStats
devicestepstatsorbuilder
dictvalue
 Represents a Python dict keyed by `str`. 
dictvalue.builder
 Represents a Python dict keyed by `str`. 
dictvalueorbuilder
digamma <tはtnumber >を拡張しますlgammaの導関数であるpsiを計算します(の絶対値のログ

`ガンマ(x)`)、要素に関して。

拡張2d <tはtnumber >を拡張します4-d `input`および3-d`フィルター`テンソルのグレースケール拡張を計算します。
拡張2dbackPropfilter <t tnumber >フィルターに対する形態学的2-D拡張の勾配を計算します。
拡張2dbackpropinput <tはtnumber >を拡張します入力に対する形態学的2-D拡張の勾配を計算します。
寸法
次元空間
DirectedInterleaveDataset 「N」個のデータセットの固定リスト上の「InterleaveDataset」の代替。
DirectedInterleaveDataset 「N」個のデータセットの固定リスト上の「InterleaveDataset」の代替。
div <t ttype >を拡張しますx / y要素を返します。
divnonan <t ttype >を拡張します分母がゼロの場合は0を返します。
dot <t ttype >を伸ばしますで文書化されたXLA Dotgeneralオペレーターをラップします

https://www.tensorflow.org/performance/xla/operation_semantics#dotgeneral。

doubledatabufferダブルのDataBuffer
doubledatalayout <sはdatabuffer <?>>を拡張しますバッファに保存されているデータをダブルに変換するDataLayout
doubledensendarray
ダブルNDアレイダブルのNdArray
drawboundingboxes <tはtnumber >を拡張します画像のバッチ上に境界ボックスを描画します。
ダミー反復カウンター
ダミーメモリキャッシュ
ダミーシードジェネレータ
dynamicPartition <t extends ttype > 「パーティション」のインデックスを使用して、「データ」を「num_partitions」テンソルに分割します。
dynamicslice <t extends ttype >文書化されたXLA DynamicsLiceオペレーターをラップします

https://www.tensorflow.org/performance/xla/operation_semantics#dynamicslice。

dynamicStitch <t extends ttype > 「data」テンソルの値を単一のテンソルにインターリーブします。
dynamicUpdateslice <t ttype >文書化されたXLA DynamicUpDatesLiceオペレーターをラップします

https://www.tensorflow.org/performance/xla/operation_semantics#dynamicupdateslice。

E

エイジャーセッションTensorflow操作を熱心に実行するための環境。
eagersession.deviceplacementpolicy特定のデバイスで操作を実行しようとするときに行動する方法を制御しますが、いくつかの入力テンソルはそのデバイスにありません。
eagersession.options
編集距離(おそらく正規化された) レーベンシュタイン編集距離を計算します。
editdistance.options EditDistanceためのオプションの属性
eig <uはttype >を拡張します1つ以上の正方形のマトリックスの固有分解を計算します。
eig.options Eigのオプションの属性
einsum <tはttype >を伸ばしますアインシュタインの総和規則に従ったテンソル短縮。
einsum <tはttype >を伸ばします2つの入力と1つの出力を備えたBasic Einsum OPをサポートするOP。
elu <tはtnumber >を拡張します指数線形を計算します: `exp(feature)-1` if <0、` feations`それ以外の場合。
elu <tはtfloating >を拡張します指数線形ユニット。
Elugrad <tはtnumber >を拡張します指数線形(ELU)操作の勾配を計算します。
埋め込みアクティブTPU 埋め込みの差別化を可能にするオペレーション。
空の<t ttype >を伸ばします指定された形状のテンソルを作成します。
empty.options Emptyのオプションの属性
空のTensorList空のテンソル リストを作成して返します。
EmptyTensorMap空のテンソル マップを作成して返します。
EncodeBase64文字列をWebセーフBase64形式にエンコードします。
EncodeBase64.options EncodeBase64のオプション属性
encodejpeg jpeg-encode画像。
encodejpeg.options EncodeJpegのオプション属性
encodejpegvariablequality JPEGは、提供された圧縮品質で入力画像をエンコードします。
encodepng png-encode画像。
encodepng.options EncodePngのオプションの属性
エンコードプロトこの操作は、入力テンソルで提供された protobuf メッセージをシリアル化します。
encodeproto.options EncodeProtoのオプションの属性
encodewav WAVファイル形式を使用してオーディオデータをエンコードします。
終点注釈は、 @Operatorで注釈されたクラスのメソッドをマークするために使用されます。@operatorは、エンドポイントをERROR(Ops/org.tensorflow.op.Ops Ops)またはそのグループの1つに生成する必要があります。
enqueetpuembedingintegerbatch入力バッチテンソルのリストをtpuembedingに描写するOP。
enqueetpuembeddingintegerbatch.options EnqueueTPUEmbeddingIntegerBatchのオプション属性
enqueetpuembeddingraggedtensorbatch tf.nn.embedding_lookup()を使用するコードの移植を容易にします。
enqueetpuembeddingraggedtensorbatch.options EnqueueTPUEmbeddingRaggedTensorBatchのオプション属性
enqueetpuembeddingsparsebatch sparsetensorから入力インデックスをtpuembeddingするOP。
enqueetpuembeddingsparsebatch.options EnqueueTPUEmbeddingSparseBatchのオプション属性
enqueetpuembedingsparsetEnsorbatch tf.nn.embedding_lookup_sparse()を使用するコードの移植を容易にします。
enqueetpuembeddingsparsetensorbatch.options EnqueueTPUEmbeddingSparseTensorBatchのオプション属性
ttype >を保証しますテンソルの形状が予想される形状と一致することを確認します。
<t extends ttype >を入力します子フレームを作成または検索し、子フレームで「data」を使用できるようにします。
Enter.options Enterのオプションの属性
EntryValue protobufタイプtensorflow.EntryValue
EntryValue.Builder protobufタイプtensorflow.EntryValue
EntryValue.kindcase
EntryValueorBuilder
等しい(x == y)要素ごとの真理値を返します。
equal.options Equalの属性
erf <tはtnumber >を拡張します`x`要素の場合のガウスエラー関数を計算します。
erfc <tはtnumber >を拡張します`x`要素ごとの相補的なエラー関数を計算します。
erfinv <tはtnumber >を拡張します
エラーコード
errorcodesprotos
euclideannorm <t ttype >テンソルの次元にわたる要素のユークリッド ノルムを計算します。
euclideannorm.options EuclideanNormのオプションの属性
イベント
 Protocol buffer representing an event that happened during
 the execution of a Brain model. 
event.builder
 Protocol buffer representing an event that happened during
 the execution of a Brain model. 
event.whatcase
eventorbuilder
eventProtos
protobufタイプtensorflow.Example
example.builder protobufタイプtensorflow.Example
Exampleorbuilder
emplerserconfiguration protobufタイプtensorflow.ExampleParserConfiguration
emplerserconfiguration.builder protobufタイプtensorflow.ExampleParserConfiguration
emplerserconfigurationorbuilder
emplerserconfigurationprotos
ExampleProtos
実行するTPUデバイスでTPUプログラムをロードおよび実行するOP。
execueandupdateVariablesオプションのインプレース変数更新を備えたプログラムを実行するOP。
実行
 Data relating to the eager execution of an op or a Graph. 
execution.builder
 Data relating to the eager execution of an op or a Graph. 
executionEnvironment Tensorflow Operationを作成および実行するための環境を定義します。
executionEnvironment.types
executionorbuilder
exit <t ttype >を伸ばします現在のフレームを終了して親フレームに戻ります。
exp <t ttype >を拡張しますx要素の指数を計算します。
ExpandDims <t拡張TType >テンソルのシェイプに 1 の次元を挿入します。
expint <tはtnumber >を拡張します
expm1 <tはttype >を拡張します`exp(x)-1`要素ごとに計算します。
指数<tはtfloating >を拡張します指数アクティブ化関数。
抽出グリンプ入力テンソルから垣間見える部分を抽出します。
extractglimpse.options ExtractGlimpseのオプションの属性
extractimagePatches <t ttype > 「画像」から「パッチ」を抽出し、それらを「深さ」の出力寸法に入れます。
extractjpegshape <tはtnumber >を拡張しますJPEGエンコード画像の形状情報を抽出します。
extractvolumepatches <tはtnumber >を拡張します「入力」から「パッチ」を抽出し、それらを「深度」出力次元に置きます。

F

事実要因に関する事実を出力します。
FakeQuantWithMinMaxArgs 「入力」テンソルを疑似量子化し、同じ型の「出力」テンソルに float 型を入力します。
fakequantwithminmaxargs.options FakeQuantWithMinMaxArgsのオプションの属性
fakequantwithminmaxargsgradient fakequantwithminmaxargs操作の勾配を計算します。
fakequantwithminmaxargsgradient.options FakeQuantWithMinMaxArgsGradientのオプションの属性
FakeQuantWithMinMaxVarsグローバルフロートスカラーを介してフロートのタイプフロートの「入力」テンソルを偽物化する

偽のフロートスカラーを介して「inputs」タイプフロートの「入力」テンソルをquantizeします。

fakequantwithminmaxvars.options FakeQuantWithMinMaxVarsのオプションの属性
fakequantwithminmaxvarsgradient fakequantwithminmaxvars操作の勾配を計算します。
fakequantwithminmaxvarsgradient.options FakeQuantWithMinMaxVarsGradientのオプションの属性
fakequantwithminmaxvarsperchannelチャンネルごとのフロートを介してフロートのタイプフロートの「入力」テンソルを偽物化する

偽 - チャンネルごとの型フロートの「入力」テンソルとシェイプの1つをQuantizeします: `[d]`、 `[b、d]` `[b、h、w、d]`形状のmin`と `max` [d]`から「出力」テンソル「入力」と同じ形状。

fakequantwithminmaxvarsperchannel.options FakeQuantWithMinMaxVarsPerChannelのオプション属性
FakeQuantWithMinMaxVarsPerChannelGradient FakeQuantWithMinMaxVarsPerChannel 操作の勾配を計算します。
fakequantwithminminmaxvarsperchannelgradient.options FakeQuantWithMinMaxVarsPerChannelGradientのオプション属性
ファステルメントシーケンス<t、uはndarrayを拡張します<t >>その要素を反復するときに同じNdArrayインスタンスをリサイクルするシーケンス
特徴
 Containers for non-sequential data. 
feature.builder
 Containers for non-sequential data. 
feature.kindcase
featureconfiguration protobufタイプtensorflow.FeatureConfiguration
featureconfiguration.builder protobufタイプtensorflow.FeatureConfiguration
featureconfiguration.configcase
featureconfigurationorbuilder
長編主義者
 Containers for sequential data. 
featurelist.builder
 Containers for sequential data. 
featurelistorbuilder
長編主義者Protobuf Type tensorflow.FeatureLists
featurelists.builder Protobuf Type tensorflow.FeatureLists
featurelistSorbuilder
featureorbuilder
featureprotos
特徴Protobuf Type tensorflow.Features
feature.builder Protobuf Type tensorflow.Features
featureSorbuilder
fft <tはttype >を拡張します高速フーリエ変換。
fft2d <tはttype >を拡張します2D高速フーリエ変換。
fft3d <t extends ttype > 3D高速フーリエ変換。
fifoqueueファーストインファーストアウト順序で要素を生成するキュー。
fifoqueue.options FifoQueueのオプションの属性
fill <uはttype >を拡張しますスカラー値で満たされたテンソルを作成します。
filterbylastComponentDataset最後のコンポーネントにtrueを持つ「input_dataset」の最初のコンポーネントの要素を含むデータセットを作成します。
指紋フィンガープリント値を生成します。
fixedlenfeatureproto Protobuf Type tensorflow.FixedLenFeatureProto
fixedlenfeatureproto.builder Protobuf Type tensorflow.FixedLenFeatureProto
sixtlenfeatureprotoorbuilder
sixedlengtorddataset
sixtlengthrecordreaderファイルから固定長のレコードを出力する読者。
sixtlengthrecordreader.options FixedLengthRecordReaderのオプション属性
sixedunigramcandidateSampler学習したユニグラム分布を使用して、候補サンプリングのラベルを生成します。
sixtunigramcandidateSampler.options FixedUnigramCandidateSamplerのオプションの属性
float16layout IEEE-754ハーフエシジョンフローティングポイント仕様に、32ビットフロートを16ビットから16ビットに変換するデータレイアウト。
floatdatabufferフロートのDataBuffer
floatdatalayout <sはdatabuffer <?>>を拡張しますフロートにバッファに保存されているデータを変換するDataLayout
floatdensendarray
フロートリストprotobufタイプtensorflow.FloatList
floatlist.builder protobufタイプtensorflow.FloatList
floatlistorbuilder
floatndarrayフロートのNdArray
フロア<tはtnumber >を伸ばしますxより大きくない要素ごとの最大整数を返します。
floordiv <tはttype >を拡張しますx // y要素ごとに返します。
floormod <tはtnumber >を拡張します要素ごとの分割の残りを返します。
flushsummarywriter
fractionalavgpool <tはtnumber >を拡張します入力上の分数平均プーリングを実行します。
fractionalavgpool.options FractionalAvgPoolのオプションの属性
fractionalavgpoolgrad <t tnumber > FractionAlavgpool関数の勾配を計算します。
fractionalavgpoolgrad.options FractionalAvgPoolGradのオプション属性
fractionalmaxpool <tはtnumber >を拡張します入力で部分的な最大プーリングを実行します。
fractionalmaxpool.options FractionalMaxPoolのオプションの属性
fractionalmaxpoolgrad <t tnumber > FractionalMaxpool関数の勾配を計算します。
fractionalmaxpoolgrad.options FractionalMaxPoolGradのオプション属性
Frennelcos <tはtnumber >を拡張します
fresnelsin <tはtnumber >を拡張します
ftrl FTRLアルゴリズムを実装するオプティマイザー。
functiondef
 A function can be instantiated when the runtime can bind every attr
 with a value. 
functiondef.argattrs
 Attributes for function arguments. 
functiondef.argattrs.builder
 Attributes for function arguments. 
functiondef.argattrsorbuilder
functiondef.builder
 A function can be instantiated when the runtime can bind every attr
 with a value. 
functiondeflibrary
 A library is a set of named functions. 
functiondeflibrary.builder
 A library is a set of named functions. 
functiondeflibraryorbuilder
functiondeforbuilder
functionprotos
機能スペック
 Represents `FunctionSpec` used in `Function`. 
関数仕様ビルダー
 Represents `FunctionSpec` used in `Function`. 
functionspec.experimmatalcompile
 Whether the function should be compiled by XLA. 
functionspecorbuilder
FusedBatchNorm <Tはtnumberを拡張し、uはtnumberを拡張します>バッチ正規化。
FusedBatchNorm.options FusedBatchNormのオプション属性
fusedbatchnormgrad <t tnumberを拡張し、uはtnumberを拡張します>バッチ正規化の勾配。
FusedBatchNormgrad.options FusedBatchNormGradのオプション属性
FusedPadConv2d <T拡張tnumber >畳み込み中にプリプロースとしてパディングを実行します。
fusedResizeandpadconv2d <t tnumber >畳み込み中に、再処理としてサイズとパディングを実行します。
fusedResizeandpadconv2d.options FusedResizeAndPadConv2dのオプションの属性

G

収集<t tnumber >を拡張します同じタイプと形状の複数のテンソルを相互に蓄積します。
収集<t type >を拡張します`params` 軸 `axis` から `indices` に従ってスライスを収集します。
収集<t type >を拡張します文書化されたXLA収集オペレーターをラップします

https://www.tensorflow.org/xla/operation_semantics#gather

収集オプションGatherのオプション属性
収集オプションGatherのオプション属性
gathernd <tはttype >を拡張します`params` からのスライスを、`indices` で指定された形状を持つ Tensor に集めます。
grachv2 <tはtnumber >を拡張します同じタイプと形状の複数のテンソルを相互に蓄積します。
grackingv2.options GatherV2のオプションの属性
GeneateBoundingBoxProposalsこのOPは、ARXIV:1506.01497のEQ.2に従って、指定された境界ボックス(bbox_deltas)エンコードされたWRTアンカーから関心のある領域を生成します。

OPは、上部の「pre_nms_topn`スコアリングボックスを選択し、アンカーに関してそれらを解読し、「nms_threshold」よりも高い重なりのボックスに非最大抑制を適用します。 min_size`。

generateboundingboxProposals.options GenerateBoundingBoxProposalsのオプションの属性
生成されたvocabremapping新しい語彙ファイルと古い語彙ファイルへのパスが与えられた場合、の再マッピングテンソルを返します

長さ `num_new_vocab`、ここで`再マッピング[i] `には、新しい語彙の行` i`に対応する古い語彙の行番号が含まれています(new_vocab_offset`から始まります。 1`新しい語彙のエントリ「I」が古い語彙にない場合。

generatevocabremapping.options GenerateVocabRemappingのオプションの属性
GetSessionHandle入力テンソルを現在のセッションの状態に保存します。
getSessionTensor <t extends ttype >ハンドルで指定されたテンソルの値を取得します。
Glorot <tはtfloating >を拡張しますXavier Initializerとも呼ばれるGlorot Initializer。
GPU情報Protobuf 型tensorflow.GPUInfo
GPU情報ビルダーProtobuf 型tensorflow.GPUInfo
gpuinfoorbuilder
gpuoptions protobufタイプtensorflow.GPUOptions
gpuoptions.builder protobufタイプtensorflow.GPUOptions
gpuoptions.experimpal protobufタイプtensorflow.GPUOptions.Experimental
gpuoptions.experimental.builder protobufタイプtensorflow.GPUOptions.Experimental
GPUOptions.Experimental.VirtualDevices
 Configuration for breaking down a visible GPU into multiple "virtual"
 devices. 
GPUOptions.Experimental.VirtualDevices.Builder
 Configuration for breaking down a visible GPU into multiple "virtual"
 devices. 
gpuoptions.experimental.virtualdevicesorbuilder
gpuoptions.experimematalorbuilder
gpuoptionsorbuilder
GradientDef
 GradientDef defines the gradient function of a function defined in
 a function library. 
GradientDef.Builder
 GradientDef defines the gradient function of a function defined in
 a function library. 
GradientDeforBuilder
グラデーションデセント基本的な確率勾配降下オプティマイザー。
勾配操作を追加して、 y s wrt x s、ie、 d(y_1 + y_2 + ...)/dx_1, d(y_1 + y_2 + ...)/dx_2...

Options.dx()値が設定されている場合、それらはいくつかの損失関数L wrtの初期の象徴的な部分微分としてです

gradients.options Gradientsのオプションの属性
グラフTensorflow計算を表すデータフローグラフ。
graph.whilesubgraphbuilder BuildSubgraphメソッドをオーバーライドする抽象クラスをインスタンス化するために使用され、しばらくループする条件付きまたはボディサブグラフを構築します。
graphdebuginfo protobufタイプtensorflow.GraphDebugInfo
graphdebuginfo.builder protobufタイプtensorflow.GraphDebugInfo
graphdebuginfo.filelinecol
 This represents a file/line location in the source code. 
graphdebuginfo.filelinecol.builder
 This represents a file/line location in the source code. 
graphdebuginfo.filelinecolorbuilder
graphdebuginfo.stacktrace
 This represents a stack trace which is a ordered list of `FileLineCol`. 
graphdebuginfo.stacktrace.builder
 This represents a stack trace which is a ordered list of `FileLineCol`. 
graphdebuginfo.stacktraceorbuilder
graphdebuginfoorbuilder
graphdebuginfoprotos
グラフ定義
 Represents the graph of operations
 
protobufタイプtensorflow.GraphDef
グラフ定義ビルダー
 Represents the graph of operations
 
protobufタイプtensorflow.GraphDef
グラフ定義またはビルダー
GraphExeCutionTrace
 Data relating to an execution of a Graph (e.g., an eager execution of a
 FuncGraph). 
graphexecutiontrace.builder
 Data relating to an execution of a Graph (e.g., an eager execution of a
 FuncGraph). 
graphexecutiontraceorbuilder
GraphOpCreation
 The creation of an op in a TensorFlow Graph (e.g., FuncGraph in TF2). 
graphopcreation.builder
 The creation of an op in a TensorFlow Graph (e.g., FuncGraph in TF2). 
GraphOpCreationorBuilder
グラフェペレーションGraphにノードとして追加されたOperationの実装。
GraphOperationBuilder GraphOperationGraphに追加するためのOperationBuilder
Graphoptions protobufタイプtensorflow.GraphOptions
graphoptions.builder protobufタイプtensorflow.GraphOptions
graphoptionsorbuilder
GraphProtos
GraphTransferConstNodeInfo protobufタイプtensorflow.GraphTransferConstNodeInfo
GraphTransferConstNodeInfo.Builder protobufタイプtensorflow.GraphTransferConstNodeInfo
GraphTransferConstNodeInfoorBuilder
GraphTransfergraphinputNodeInfo protobufタイプtensorflow.GraphTransferGraphInputNodeInfo
GraphTransfergraphinputnodeinfo.Builder protobufタイプtensorflow.GraphTransferGraphInputNodeInfo
GraphTransfergraphinputNodeInfoorBuilder
GraphTransfergraphOutputNodeInfo protobufタイプtensorflow.GraphTransferGraphOutputNodeInfo
GraphTransfergraphOutputNodeInfo.Builder protobufタイプtensorflow.GraphTransferGraphOutputNodeInfo
GraphTransfergraphOutputNodeInfoorBuilder
GraphTransferinfo
 Protocol buffer representing a handle to a tensorflow resource. 
GraphTransferinfo.Builder
 Protocol buffer representing a handle to a tensorflow resource. 
GraphTransferinfo.Destination protobuf enum tensorflow.GraphTransferInfo.Destination
GraphTransferinFoorBuilder
グラフトランスフェリンフォプロト
graphtransfernodeinfo protobufタイプtensorflow.GraphTransferNodeInfo
GraphTransfernodeInfo.Builder protobufタイプtensorflow.GraphTransferNodeInfo
GraphTransfernodeInfoorBuilder
GraphTransfernodeInput protobufタイプtensorflow.GraphTransferNodeInput
GraphTransfernodeInput.Builder protobufタイプtensorflow.GraphTransferNodeInput
GraphTransfernodeInputinfo protobufタイプtensorflow.GraphTransferNodeInputInfo
GraphTransfernodeInputinfo.Builder protobufタイプtensorflow.GraphTransferNodeInputInfo
GraphTransfernodeInputinFoorBuilder
GraphTransfernodeInputorBuilder
GraphTransfernodeOutputinfo protobufタイプtensorflow.GraphTransferNodeOutputInfo
GraphTransfernodeOutputinfo.Builder protobufタイプtensorflow.GraphTransferNodeOutputInfo
GraphTransfernodeOutputinFoorBuilder
グレーター要素ごとに(x> y)の真理値を返します。
より大きい等しい(x >= y) の真理値を要素ごとに返します。
grublockcell <tはtnumber >を拡張します1回のステップでGRUセルフォワード伝播を計算します。
grublockcellgrad <t tnumber > 1回のステップでGRUセルバックプロパゲーションを計算します。
保証<t ttype >を拡張します入力テンソルが定数であることを TF ランタイムに保証します。

H

hardsigmoid <tはtfloating >を拡張しますハードシグモイドの活性化。
ハッシュテーブル初期化されていないハッシュ テーブルを作成します。
hashtable.options HashTableのオプションの属性
彼はtfloating >を拡張します彼は初期化された。
ヘルパーいくつかの操作を追加または実行し、そのうちの1つを返すコアメソッドのコンテナクラス。
ヒンジラベルと予測の間のヒンジの損失を計算します。
ヒンジ<tはtnumber >を拡張しますラベルと予測の間のヒンジ損失メトリックを計算するメトリック。
histogramfixedwidth <uはtnumber >を拡張します値のヒストグラムを返します。
histogramproto
 Serialization format for histogram module in
 core/lib/histogram/histogram.h
 
protobufタイプtensorflow.HistogramProto
histogramproto.builder
 Serialization format for histogram module in
 core/lib/histogram/histogram.h
 
protobufタイプtensorflow.HistogramProto
histogramprotoorbuilder
ヒストグラムサマリーヒストグラムで「概要」プロトコルバッファーを出力します。
hsvtorgb <tはtnumber >を拡張しますHSVからRGBに1つ以上の画像を変換します。
フーバーラベルと予測の間のハーバーの損失を計算します。

アイデンティティ<tはtfloating >を拡張しますアイデンティティマトリックスを生成する初期イザー。
ID <t拡張ttype >入力テンソルまたは値と同じ形状と内容を持つテンソルを返します。
IDN入力と同じ形状と内容を持つテンソルのリストを返します

テンソル。

IdentityReaderキーと値の両方としてキューに登録された作業を出力する読者。
Identityreader.options IdentityReaderのオプションの属性
ifft <tはttype >を拡張します逆高速フーリエ変換。
ifft2d <tはttype >を拡張します逆2D高速フーリエ変換。
ifft3d <tはttype >を拡張します逆3D高速フーリエ変換。
igamma <tはtnumber >を拡張します低い正規化された不完全なガンマ関数 `p(a、x)`を計算します。
igammac <tはtnumber >を拡張します上部の正規化された不完全なガンマ関数 `q(a、x)`を計算します。
igammagrada <t endocs tnumber > `igamma(a、x)` wrt `a`の勾配を計算します。
IgnoreErrorsDatasetエラーを無視して、「input_dataset」の要素を含むデータセットを作成します。
IgnoreErrorsDatasetエラーを無視して、「input_dataset」の要素を含むデータセットを作成します。
Ingreerrorsdataset.options IgnoreErrorsDatasetのオプションの属性
Ingreerrorsdataset.options IgnoreErrorsDatasetのオプションの属性
IllegalRankExceptionターゲット配列のランクのために操作が完了できない場合にスローされる例外。
イメージ<uはtnumber >を拡張します複雑な数の想像上の部分を返します。
ImageProjectiveTransFormv2 <T extends tnumber >指定された変換を各画像に適用します。
ImageProjectiveTransFormv2.options ImageProjectiveTransformV2のオプション属性
ImageProjectiveTransFormv3 <T拡張TNumber >指定された変換を各画像に適用します。
ImageProjectiveTransFormv3.options ImageProjectiveTransformV3のオプション属性
Imagesummary画像を使用して「概要」プロトコルバッファーを出力します。
Imagesummary.options ImageSummaryのオプションの属性
Immutableconst <t ttype >を拡張しますメモリ領域から不変のテンソルを返します。
ImportEvent
索引n次元配列からビューをスライスするために使用されるインデックス。
IndexedPositionIterator
indexedpositionterator.coordslongConsumer
指数インスタンス化されたIndexオブジェクトのヘルパークラス。
infeeddequeue <t extends ttype >計算に入力される値のプレースホルダー op。
Infeeddequeuetuple XLAタプルとしてのInfeedからの複数の値を取得します。
Infeedenqueue単一のテンソル値を計算に供給するOP。
Infeedenqueue.options InfeedEnqueueのオプションの属性
INFEEDENQUEUEPRELINEARIZEDBUFFER TPU Infeedに予測バッファーをエンキングするOP。
InfeedenqueueprelinearizedBuffer.options InfeedEnqueuePrelinearizedBufferのオプション属性
Infeedenqueuetuple XLAタプルとして複数のテンソル値を計算に供給します。
infeedenqueuetuple.options InfeedEnqueueTupleのオプションの属性
初期化
InitialIzer <T拡張TTYPE >初期化器用のインターフェイス
初期化可能それぞれキーと値に2つのテンソルを採取するテーブルイニシャルイザー。
initializetablefromdataset
初期化可能なFromTextFileテキストファイルからテーブルを初期化します。
fromizetablefromtextfile.options InitializeTableFromTextFile可能な属性のオプション属性
inplaceadd <t ttype >を拡張しますx の指定された行に v を追加します。
inplacesub <t ttype >を拡張します`v` を `x` の指定された行に減算します。
inplaceUpdate <t ttype >を拡張します指定された行「i」を値「v」で更新します。
int64List protobufタイプtensorflow.Int64List
int64list.builder protobufタイプtensorflow.Int64List
int64listorbuilder
intdatabuffer INTSのDataBuffer
intdatalayout <sはdatabuffer <?>>を拡張しますバッファーに保存されているデータをINTに変換するDataLayout
IntDenseNdArray
Interconnectlink protobufタイプtensorflow.InterconnectLink
interconnectlink.builder protobufタイプtensorflow.InterconnectLink
Interconnectlinkorbuilder
intndarray整数のNdArray
intopkターゲットが最上位の「k」予測にあるかどうかを言います。
inv <t ttype >を拡張します1つまたは複数の正方形の反転可能なマトリックスまたはその添加物の逆を計算します(共役は転置します)。
inv.options Invのオプションの属性
反転<t tnumber >サポートされているタイプの各ビットを反転(フリップ)します。たとえば、タイプ `uint8`値01010101は10101010になります。
invertpermutation <t endocs tnumber >テンソルの逆順列を計算します。
invgrad <tはttype >を拡張します`x` wrt wrtの入力の逆の勾配を計算します。
irfft <uはtnumber >を拡張します逆実数高速フーリエ変換。
Irfft2d <uはtnumber >を拡張します逆2D実発高速フーリエ変換。
Irfft3d <uはtnumber >を拡張します逆3D実発高速フーリエ変換。
IsBoostedTreesEnsembleInitializedツリー アンサンブルが初期化されているかどうかを確認します。
IsBoostedTreesQuantileStreamResourceInitialized分位点ストリームが初期化されているかどうかを確認します。
isfinite xのどの要素が有限であるかを返します。
ISINF xのどの要素がinfであるかを返します。
イスナンxのどの要素がnanであるかを返します。
ISoTonicRegression <uはtnumber >を拡張します等張回帰問題のバッチを解決します。
変数は初期化されていますテンソルが初期化されているかどうかを確認します。
イテレーター
IteratorFromStringHandle
IteratorFromStringHandle.options IteratorFromStringHandleのオプションの属性
イテレータGetDevice 「resource」が配置されているデバイスの名前を返します。
イテレータGetDevice 「resource」が配置されているデバイスの名前を返します。
iteratorgetNext指定されたイテレーターから次の出力を取得します。
iteratorgetNextAsoptional指定されたイテレータから次の出力をオプションのバリアントとして取得します。
iteratorgetnextsync指定されたイテレーターから次の出力を取得します。
iteratortostringhandle ITERATORを文字列に表す「与えられたresource_handle」を変換します。

J

jobdef
 Defines a single job in a TensorFlow cluster. 
jobdef.builder
 Defines a single job in a TensorFlow cluster. 
jobdeforbuilder
JobDeviceFilters
 Defines the device filters for tasks in a job. 
jobdevicefilters.builder
 Defines the device filters for tasks in a job. 
JobDeviceFilterSorbuilder
参加する指定された弦テンソルのリストの文字列を1つのテンソルに結合します。

指定されたセパレーターを使用します(デフォルトは空のセパレーターです)。

Join.options Joinのオプションの属性

K

kerneldef protobufタイプtensorflow.KernelDef
KernelDef.AttrConstraint Protobuf 型tensorflow.KernelDef.AttrConstraint
KernelDef.AttrConstraint.Builder Protobuf 型tensorflow.KernelDef.AttrConstraint
kerneldef.attrconstraintorbuilder
kerneldef.builder protobufタイプtensorflow.KernelDef
Kerneldeforbuilder
kerneldefprotos
カーネリスト
 A collection of KernelDefs
 
Protobuf Type tensorflow.KernelList
kernellist.builder
 A collection of KernelDefs
 
Protobuf Type tensorflow.KernelList
Kernellistorbuilder
keyvalueSort <t endocs tnumber 、uはttype >文書化されたXLAソート演算子をラップします

https://www.tensorflow.org/performance/xla/operation_semantics#sort。

Kldivergenceラベルと予測の間のKullback-Leiblerの発散損失を計算します。
Kldivergence <t endocs tnumber >ラベルと予測の間のKullback-Leiblerの発散損失メトリックを計算するメトリック。
KMC2チェーンの初期化シード セットに追加する必要があるデータ ポイントのインデックスを返します。
KmeansPlusPlus初期化KMeans++ 基準を使用して、入力の num_to_sample 行を選択します。
KthOrderStatisticデータセットの K 番目の統計を計算します。

L

l2loss <tはtnumber >を拡張しますL2損失。
Latencystatsdataset StatsAggregator で `input_dataset` 要素を生成する待ち時間を記録します。
Latencystatsdataset StatsAggregator で `input_dataset` 要素を生成する待ち時間を記録します。
leakyrelu <tはtnumber >を拡張します修正線形を計算: `max(feature、feature * alpha)`。
leakyrelu.options LeakyReluのオプションの属性
leakyrelugrad <tはtnumber >を拡張しますリーキレル操作のために整流された線形勾配を計算します。
leakyrelugrad.options LeakyReluGradのオプションの属性
recoundunigramcandidateSampler学習したユニグラム分布を使用して、候補サンプリングのラベルを生成します。
LearcidunigramcandidateSampler.options LearnedUnigramCandidateSamplerのオプションの属性
lecun <tはtfloating >を拡張しますLecun Normal Initializer。
leftshift <tはtnumber >を拡張しますelementWise「x」と「y」のビットワイズの左シフトを計算します。
少ない(x <y)要素ごとの真理値を返します。
少ない(x <= y)要素ごとの真理値を返します。
lgamma <tはtnumber >を拡張します`gamma(x)`要素ごとの絶対値のログを計算します。
線形<uはtnumber >を拡張します線形活性化関数(パススルー)。
linspace <tはtnumber >を拡張します一定の間隔で値を生成します。
listener_bytepointer
listener_string
ListValue
 Represents a Python list. 
ListValue.Builder
 Represents a Python list. 
ListValueOrbuilder
LMDBデータセット1 つ以上の LMDB ファイルにキーと値のペアを出力するデータセットを作成します。
lmdbdataset
lmdbreader LMDBファイルからレコードを出力するリーダー。
lmdbreader.options LmdbReaderのオプションの属性
LoadAndRemapMatrixチェックポイントから名前「old_tensor_name」に2-d(matrix) `tensor`をロードします

`ckpt_path`で、指定された再申告を使用して行と列を潜在的に再配置する可能性があります。

loadandremapmatrix.options LoadAndRemapMatrixのオプション属性
loadtpuembeddingdadedeltaparametersアダデルタ埋め込みパラメーターをロードします。
loadtpuembeddingadadeltaparameters.options LoadTPUEmbeddingAdadeltaParametersのオプションの属性
loadtpuembeddingdadeltaparametersgradaccumdebugデバッグサポートでアダデルタパラメーターをロードします。
loadtpuembeddingadadeltaparametersgradaccumdebug.options LoadTPUEmbeddingAdadeltaParametersGradAccumDebug gradaccumdebugのオプションの属性
loadtpuembeddingadagradparametersパラメーターを埋め込むAdagradの埋め込みをロードします。
loadtpuembeddingadagradparameters.options LoadTPUEmbeddingAdagradParametersのオプションの属性
loadtpuembeddingadagradparametersgradaccumdebugデバッグサポートを使用してパラメーターを埋め込みます。
loadtpuembeddingadagradparametersgradaccumdebug.options LoadTPUEmbeddingAdagradParametersGradAccumDebug gradaccumdebugのオプション属性
Loadtpuembeddingdingadamparameters Adam Embeddingパラメーターをロードします。
loadtpuembeddingdingadamparameters.options LoadTPUEmbeddingADAMParametersのオプションの属性
loadtpuembeddingdingadamparametersgradaccumdebugデバッグサポートを使用してパラメーターを埋め込むAdamをロードします。
loadtpuembeddingdangaprametersgradaccumdebug.options LoadTPUEmbeddingADAMParametersGradAccumDebugのオプション属性
loadtpuembeddingCenteredRMSPROPPARAMETERSロード中心のRMSPROP埋め込みパラメーター。
loadtpuembeddingcenteredrmspropparameters.options LoadTPUEmbeddingCenteredRMSPropParametersのオプション属性
loadtpuembeddingftrlparameters FTRL埋め込みパラメーターをロードします。
loadtpuembeddingftrlparameters.options LoadTPUEmbeddingFTRLParametersのオプションの属性
loadtpuembeddingftrlparametersgradaccumdebugデバッグサポートを備えたFTRL埋め込みパラメーターをロードします。
loadtpuembeddingftrlparametersgradaccumdebug.options LoadTPUEmbeddingFTRLParametersGradAccumDebug gradaccumdebugのオプション属性
loadtpuembeddingmdladagradlightparameters MDL Adagrad Light Embeddingパラメーターをロードします。
loadtpuembeddingmdladagradlightparameters.options LoadTPUEmbeddingMDLAdagradLightParametersのオプション属性
loadtpuembeddingmomentumparametersパラメーターを埋め込む運動量を負荷します。
loadtpuembeddingmomentumparameters.options LoadTPUEmbeddingMomentumParametersのオプションの属性
loadtpuembeddingmomentumparametersgradaccumdebugデバッグサポートを使用してパラメーターを埋め込む運動量を積み込みます。
loadtpuembeddingmomentumparametersgradaccumdebug.options LoadTPUEmbeddingMomentumParametersGradAccumDebugのオプション属性
loadtpuembeddingpromaladagradparameters近位のアダグラード埋め込みパラメーターを積みます。
loadtpuembeddingpromaladagradparameters.options LoadTPUEmbeddingProximalAdagradParametersのオプション属性
loadtpuembeddingpromaladagradparametersgradaccumdebugデバッグサポートを備えた近位のアダグラード埋め込みパラメーターをロードします。
loadtpuembeddingpromixaladagradparametersgradaccumdebug.options LoadTPUEmbeddingProximalAdagradParametersGradAccumDebugのオプション属性
loadtpuembeddingpromixalyogiparameters
loadtpuembeddingpromixalyogiparameters.options LoadTPUEmbeddingProximalYogiParametersのオプション属性
loadtpuembeddingpromixalyogiparametersgradaccumdebug
loadtpuembeddingpromixalyogiparametersgradaccumdebug.options LoadTPUEmbeddingProximalYogiParametersGradAccumDebugのオプション属性
loadtpuembeddingrmspropparameters RMSPROP埋め込みパラメーターをロードします。
loadtpuembeddingrmspparameters.options LoadTPUEmbeddingRMSPropParametersのオプション属性
loadtpuembeddingrmspparametersgradaccumdebugデバッグサポートを備えたRMSPROP埋め込みパラメーターをロードします。
loadtpuembeddingrmsparametersgradaccumdebug.options LoadTPUEmbeddingRMSPropParametersGradAccumDebugのオプション属性
loadtpuembeddingStochasticGradIntDescentParameters SGD埋め込みパラメーターをロードします。
loadtpuembeddingStochasticGradIntDescentParameters.options LoadTPUEmbeddingStochasticGradientDescentParametersのオプション属性
loadtpuembeddingStochasticGradIntDescentParametersGradaccumdebug SGD埋め込みパラメーターをロードします。
loadtpuembeddingStochasticGradientDescentParametersgradaccumdebug.options LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebugのオプション属性
locallinks protobufタイプtensorflow.LocalLinks
locallinks.builder protobufタイプtensorflow.LocalLinks
locallinksorbuilder
ローカルResponsEnormalization <tはtnumber >を拡張しますローカル応答の正規化。
localResponsEnormalization.options LocalResponseNormalizationの属性のオプション属性
Local ResponsEnormalizationGrad <T拡張TNumber >局所応答の正規化の勾配。
Local ResponsEnormalizationGrad.options LocalResponseNormalizationGradのオプション属性
log <tはttype >を拡張しますx要素ごとの自然対数を計算します。
log1p <tはttype >を拡張します(1 + x)要素の自然対数を計算します。
logcoshコンピューターは、予測エラーの双曲線コサインの対数を計算します。
logcosherror <t endocs tnumber >ラベルと予測の間の予測誤差メトリックの双曲線コサインの対数を計算するメトリック。
logicaland xとyの要素ごとの真理値を返します。
logicalnot 「x」という要素ごとに真実の値を返します。
論理xまたはyの真実値を要素ごとに返します。
logmatrixdeterminant <t ttype >を拡張しますの決定要因の絶対値の記号とログを計算します

1つ以上の正方形のマトリックス。

logmemoryprotos
logmessage
 Protocol buffer used for logging messages to the events file. 
logmessage.builder
 Protocol buffer used for logging messages to the events file. 
logmessage.level Protobuf enum tensorflow.LogMessage.Level
LogMessageOrBuilder
LogSoftmax <T extends TNumber > Computes log softmax activations.
LogUniformCandidateSampler Generates labels for candidate sampling with a log-uniform distribution.
LogUniformCandidateSampler.Options Optional attributes for LogUniformCandidateSampler
LongDataBuffer A DataBuffer of longs.
LongDataLayout <S extends DataBuffer <?>> A DataLayout that converts data stored in a buffer to longs.
LongDenseNdArray
LongNdArray An NdArray of longs.
LookupTableExport <T extends TType , U extends TType > Outputs all keys and values in the table.
LookupTableFind <U extends TType >テーブル内のキーを検索し、対応する値を出力します。
LookupTableImport Replaces the contents of the table with the specified keys and values.
LookupTableInsert Updates the table to associates keys with values.
LookupTableRemove Removes keys and its associated values from a table.
ルックアップテーブルサイズ指定されたテーブル内の要素の数を計算します。
ループ条件入力を出力に転送します。
損失
損失Built-in loss functions.
LossesHelper These are helper methods for Losses and Metrics and will be module private when Java modularity is applied to TensorFlow Java.
LossMetric <T extends TNumber > Interface for Metrics that wrap Loss functions.
LossTuple <T extends TNumber > A helper class for loss methods to return labels, target, and sampleWeights
より低いすべての大文字をそれぞれの小文字に変換します。
Lower.Options Optional attributes for Lower
LowerBound <U extends TNumber >各行に沿って lower_bound(sorted_search_values,values) を適用します。
LSTMBlockCell <T extends TNumber > 1 タイム ステップの LSTM セル順方向伝播を計算します。
LSTMBlockCell.Options LSTMBlockCellのオプションの属性
LSTMBlockCellGrad <T extends TNumber > Computes the LSTM cell backward propagation for 1 timestep.
Lu <T extends TType , U extends TNumber > Computes the LU decomposition of one or more square matrices.

M

MachineConfiguration Protobuf type tensorflow.MachineConfiguration
MachineConfiguration.Builder Protobuf type tensorflow.MachineConfiguration
MachineConfigurationOrBuilder
MakeIterator Makes a new iterator from the given `dataset` and stores it in `iterator`.
ユニークにする非バッチ ディメンション内のすべての要素を一意にしますが、次の要素に「近い」ようにします。

それらの初期値。

MapClear Op removes all elements in the underlying container.
MapClear.Options Optional attributes for MapClear
MapDataset
MapIncompleteSize Op は、基になるコンテナー内の不完全な要素の数を返します。
MapIncompleteSize.Options Optional attributes for MapIncompleteSize
MapIterator
MapOptional
MapPeek Op peeks at the values at the specified key.
MapPeek.Options Optional attributes for MapPeek
マップサイズOp は、基になるコンテナ内の要素の数を返します。
MapSize.Options Optional attributes for MapSize
MapStage Stage (key, values) in the underlying container which behaves like a hashtable.
MapStage.Options Optional attributes for MapStage
MapUnstage Op removes and returns the values associated with the key

from the underlying container.

MapUnstage.Options Optional attributes for MapUnstage
MapUnstageNoKey Op removes and returns a random (key, value)

from the underlying container.

MapUnstageNoKey.Options Optional attributes for MapUnstageNoKey
MatchingFiles Returns the set of files matching one or more glob patterns.
MatchingFilesDataset
MatchingFilesDataset
MatMul <T extends TType > Multiply the matrix "a" by the matrix "b".
MatMul.Options Optional attributes for MatMul
MatrixDiag <T extends TType >指定されたバッチ対角値を持つバッチ対角テンソルを返します。
MatrixDiagPart <T extends TType >バッチ化されたテンソルのバッチ化された対角部分を返します。
MatrixDiagPartV3 <T extends TType >バッチ化されたテンソルのバッチ化された対角部分を返します。
MatrixDiagPartV3.Options Optional attributes for MatrixDiagPartV3
MatrixDiagV3 <T extends TType >指定されたバッチ対角値を持つバッチ対角テンソルを返します。
MatrixDiagV3.Options Optional attributes for MatrixDiagV3
MatrixLogarithm <T extends TType > Computes the matrix logarithm of one or more square matrices:

\\(log(exp(A)) = A\\)

This op is only defined for complex matrices.

MatrixSetDiag <T extends TType >新しいバッチ化された対角値を含むバッチ化された行列テンソルを返します。
MatrixSetDiag.Options Optional attributes for MatrixSetDiag
MatrixSolveLs <T extends TType > Solves one or more linear least-squares problems.
MatrixSolveLs.Options Optional attributes for MatrixSolveLs
Max <T extends TType >テンソルの次元全体の要素の最大値を計算します。
Max.Options Optional attributes for Max
Maximum <T extends TNumber > Returns the max of x and y (ie
MaxIntraOpParallelismDataset最大の演算内並列処理をオーバーライドするデータセットを作成します。
MaxIntraOpParallelismDataset最大の演算内並列処理をオーバーライドするデータセットを作成します。
MaxNorm Constrains the weights incident to each hidden unit to have a norm less than or equal to a desired value.
MaxPool <T extends TType > Performs max pooling on the input.
MaxPool.Options Optional attributes for MaxPool
MaxPool3d <T extends TNumber > Performs 3D max pooling on the input.
MaxPool3d.Options Optional attributes for MaxPool3d
MaxPool3dGrad <U extends TNumber > Computes gradients of 3D max pooling function.
MaxPool3dGrad.Options Optional attributes for MaxPool3dGrad
MaxPool3dGradGrad <T extends TNumber > Computes second-order gradients of the maxpooling function.
MaxPool3dGradGrad.Options Optional attributes for MaxPool3dGradGrad
MaxPoolGrad <T extends TNumber > maxpooling 関数の勾配を計算します。
MaxPoolGrad.Options Optional attributes for MaxPoolGrad
MaxPoolGradGrad <T extends TNumber > Computes second-order gradients of the maxpooling function.
MaxPoolGradGrad.Options Optional attributes for MaxPoolGradGrad
MaxPoolGradGradWithArgmax <T extends TNumber > Computes second-order gradients of the maxpooling function.
MaxPoolGradGradWithArgmax.Options Optional attributes for MaxPoolGradGradWithArgmax
MaxPoolGradWithArgmax <T extends TNumber > maxpooling 関数の勾配を計算します。
MaxPoolGradWithArgmax.Options Optional attributes for MaxPoolGradWithArgmax
MaxPoolWithArgmax <T extends TNumber , U extends TNumber > Performs max pooling on the input and outputs both max values and indices.
MaxPoolWithArgmax.Options Optional attributes for MaxPoolWithArgmax
Mean <T extends TNumber > A metric that that implements a weighted mean WEIGHTED_MEAN
Mean <T extends TType > Computes the mean of elements across dimensions of a tensor.
Mean.Options Optional attributes for Mean
MeanAbsoluteError Computes the mean of absolute difference between labels and predictions.
MeanAbsoluteError <T extends TNumber > A metric that computes the mean of absolute difference between labels and predictions.
MeanAbsolutePercentageError Computes the mean absolute percentage error between labels and predictions.
MeanAbsolutePercentageError <T extends TNumber > A metric that computes the mean of absolute difference between labels and predictions.
MeanMetricWrapper <T extends TNumber > A class that bridges a stateless loss function with the Mean metric using a reduction of WEIGHTED_MEAN .
MeanSquaredError Computes the mean of squares of errors between labels and predictions.
MeanSquaredError <T extends TNumber > A metric that computes the mean of absolute difference between labels and predictions.
MeanSquaredLogarithmicError Computes the mean squared logarithmic errors between labels and predictions.
MeanSquaredLogarithmicError <T extends TNumber > A metric that computes the mean of absolute difference between labels and predictions.
MemAllocatorStats
 Some of the data from AllocatorStats
 
Protobuf type tensorflow.MemAllocatorStats
MemAllocatorStats.Builder
 Some of the data from AllocatorStats
 
Protobuf type tensorflow.MemAllocatorStats
MemAllocatorStatsOrBuilder
MemChunk Protobuf type tensorflow.MemChunk
MemChunk.Builder Protobuf type tensorflow.MemChunk
MemChunkOrBuilder
MemmappedFileSystemDirectory
 A directory of regions in a memmapped file. 
MemmappedFileSystemDirectory.Builder
 A directory of regions in a memmapped file. 
MemmappedFileSystemDirectoryElement
 A message that describes one region of memmapped file. 
MemmappedFileSystemDirectoryElement.Builder
 A message that describes one region of memmapped file. 
MemmappedFileSystemDirectoryElementOrBuilder
MemmappedFileSystemDirectoryOrBuilder
MemmappedFileSystemProtos
MemoryDump Protobuf type tensorflow.MemoryDump
MemoryDump.Builder Protobuf type tensorflow.MemoryDump
MemoryDumpOrBuilder
MemoryInfo Protobuf type tensorflow.MemoryInfo
MemoryInfo.Builder Protobuf type tensorflow.MemoryInfo
MemoryInfoOrBuilder
MemoryLogRawAllocation Protobuf type tensorflow.MemoryLogRawAllocation
MemoryLogRawAllocation.Builder Protobuf type tensorflow.MemoryLogRawAllocation
MemoryLogRawAllocationOrBuilder
MemoryLogRawDeallocation Protobuf type tensorflow.MemoryLogRawDeallocation
MemoryLogRawDeallocation.Builder Protobuf type tensorflow.MemoryLogRawDeallocation
MemoryLogRawDeallocationOrBuilder
MemoryLogStep Protobuf type tensorflow.MemoryLogStep
MemoryLogStep.Builder Protobuf type tensorflow.MemoryLogStep
MemoryLogStepOrBuilder
MemoryLogTensorAllocation Protobuf type tensorflow.MemoryLogTensorAllocation
MemoryLogTensorAllocation.Builder Protobuf type tensorflow.MemoryLogTensorAllocation
MemoryLogTensorAllocationOrBuilder
MemoryLogTensorDeallocation Protobuf type tensorflow.MemoryLogTensorDeallocation
MemoryLogTensorDeallocation.Builder Protobuf type tensorflow.MemoryLogTensorDeallocation
MemoryLogTensorDeallocationOrBuilder
MemoryLogTensorOutput Protobuf type tensorflow.MemoryLogTensorOutput
MemoryLogTensorOutput.Builder Protobuf type tensorflow.MemoryLogTensorOutput
MemoryLogTensorOutputOrBuilder
MemoryStats
 For memory tracking. 
MemoryStats.Builder
 For memory tracking. 
MemoryStatsOrBuilder
Merge <T extends TType > Forwards the value of an available tensor from `inputs` to `output`.
MergeSummary Merges summaries.
MergeV2Checkpoints V2 format specific: merges the metadata files of sharded checkpoints.
MergeV2Checkpoints.Options Optional attributes for MergeV2Checkpoints
メタグラフ定義
 NOTE: This protocol buffer is evolving, and will go through revisions in the
 coming months. 
MetaGraphDef.Builder
 NOTE: This protocol buffer is evolving, and will go through revisions in the
 coming months. 
MetaGraphDef.MetaInfoDef
 Meta information regarding the graph to be exported. 
MetaGraphDef.MetaInfoDef.Builder
 Meta information regarding the graph to be exported. 
MetaGraphDef.MetaInfoDefOrBuilder
MetaGraphDefOrBuilder
MetaGraphProtos
Metric <T extends TNumber > Base class for Metrics
MetricEntry Protobuf type tensorflow.MetricEntry
MetricEntry.Builder Protobuf type tensorflow.MetricEntry
MetricEntryOrBuilder
MetricReduction Defines the different types of metric reductions
メトリクスHelper class with built-in metrics functions.
MetricsHelper These are helper methods for Metrics and will be module private when Java modularity is applied to TensorFlow Java.
Mfcc Transforms a spectrogram into a form that's useful for speech recognition.
Mfcc.Options Optional attributes for Mfcc
Min <T extends TType >テンソルの次元全体で要素の最小値を計算します。
Min.Options Optional attributes for Min
Minimum <T extends TNumber > Returns the min of x and y (ie
MinMaxNorm Constrains the weights to have the norm between a lower bound and an upper bound.
MirrorPad <T extends TType >テンソルをミラーリングされた値でパディングします。
MirrorPadGrad <T extends TType > `MirrorPad` オペレーションのグラデーション オペレーション。
MiscDataBufferFactory Factory of miscellaneous data buffers
MlirPassthroughOp Wraps an arbitrary MLIR computation expressed as a module with a main() function.
Mod <T extends TNumber > Returns element-wise remainder of division.
ModelDataset Identity transformation that models performance.
ModelDataset.Options Optional attributes for ModelDataset
勢いStochastic gradient descent plus momentum, either nesterov or traditional.
Mul <T extends TType > x * y を要素ごとに返します。
MulNoNan <T extends TType > x * y を要素ごとに返します。
MultiDeviceIterator Creates a MultiDeviceIterator resource.
MultiDeviceIteratorFromStringHandle Generates a MultiDeviceIterator resource from its provided string handle.
MultiDeviceIteratorFromStringHandle.Options Optional attributes for MultiDeviceIteratorFromStringHandle
MultiDeviceIteratorGetNextFromShard Gets next element for the provided shard number.
MultiDeviceIteratorInit Initializes the multi device iterator with the given dataset.
MultiDeviceIteratorToStringHandle Produces a string handle for the given MultiDeviceIterator.
Multinomial <U extends TNumber > Draws samples from a multinomial distribution.
Multinomial.Options Optional attributes for Multinomial
MutableDenseHashTableテンソルをバッキング ストアとして使用する空のハッシュ テーブルを作成します。
MutableDenseHashTable.Options Optional attributes for MutableDenseHashTable
可変ハッシュテーブル空のハッシュ テーブルを作成します。
MutableHashTable.Options Optional attributes for MutableHashTable
MutableHashTableOfTensors空のハッシュ テーブルを作成します。
MutableHashTableOfTensors.Options Optional attributes for MutableHashTableOfTensors
ミューテックスMutexLock でロックできる Mutex リソースを作成します。
Mutex.Options Optional attributes for Mutex
ミューテックスロックミューテックスリソースをロックします。

N

Nadam Nadam Optimizer that implements the NAdam algorithm.
NameAttrList
 A list of attr names and their values. 
NameAttrList.Builder
 A list of attr names and their values. 
NameAttrListOrBuilder
NamedDevice Protobuf type tensorflow.NamedDevice
NamedDevice.Builder Protobuf type tensorflow.NamedDevice
NamedDeviceOrBuilder
NamedTensorProto
 A pair of tensor name and tensor values. 
NamedTensorProto.Builder
 A pair of tensor name and tensor values. 
NamedTensorProtoOrBuilder
NamedTensorProtos
NamedTupleValue
 Represents Python's namedtuple. 
NamedTupleValue.Builder
 Represents Python's namedtuple. 
NamedTupleValueOrBuilder
NcclAllReduce <T extends TNumber >すべての入力テンソルにわたるリダクションを含むテンソルを出力します。
NcclAllReduce <T extends TNumber >すべての入力テンソルにわたるリダクションを含むテンソルを出力します。
NcclBroadcast <T extends TNumber >出力に接続されているすべてのデバイスに「入力」を送信します。
NcclBroadcast <T extends TNumber >出力に接続されているすべてのデバイスに「入力」を送信します。
NcclReduce <T extends TNumber > 「reduction」を使用して「num_devices」から「input」を単一のデバイスに減らします。
NcclReduce <T extends TNumber > 「reduction」を使用して「num_devices」から「input」を単一のデバイスに減らします。
NdArray <T> A data structure of N-dimensions.
NdArrays Utility class for instantiating NdArray objects.
NdArraySequence <T extends NdArray <?>> A sequence of elements of an N-dimensional array.
Ndtri <T extends TNumber >
NearestNeighbors Selects the k nearest centers for each point.
Neg <T extends TType > Computes numerical negative value element-wise.
NegTrain Training via negative sampling.
NextAfter <T extends TNumber >要素ごとに、「x2」の方向にある「x1」の次の表現可能な値を返します。
NextIteration <T extends TType >入力を次の反復で使用できるようにします。
NioDataBufferFactory Factory of JDK NIO-based data buffers
NodeDef Protobuf type tensorflow.NodeDef
NodeDef.Builder Protobuf type tensorflow.NodeDef
NodeDef.ExperimentalDebugInfo Protobuf type tensorflow.NodeDef.ExperimentalDebugInfo
NodeDef.ExperimentalDebugInfo.Builder Protobuf type tensorflow.NodeDef.ExperimentalDebugInfo
NodeDef.ExperimentalDebugInfoOrBuilder
NodeDefOrBuilder
NodeExecStats
 Time/size stats recorded for a single execution of a graph node. 
NodeExecStats.Builder
 Time/size stats recorded for a single execution of a graph node. 
NodeExecStatsOrBuilder
NodeOutput
 Output sizes recorded for a single execution of a graph node. 
NodeOutput.Builder
 Output sizes recorded for a single execution of a graph node. 
NodeOutputOrBuilder
NodeProto
NonDeterministicInts <U extends TType >非決定的にいくつかの整数を生成します。
NoneValue
 Represents None. 
NoneValue.Builder
 Represents None. 
NoneValueOrBuilder
NonMaxSuppression <T extends TNumber > Greedily selects a subset of bounding boxes in descending order of score,

以前に選択したボックスと重複する交差オーバーユニオン (IOU) が高いボックスを削除します。

NonMaxSuppression.Options Optional attributes for NonMaxSuppression
NonMaxSuppressionWithOverlaps Greedily selects a subset of bounding boxes in descending order of score,

pruning away boxes that have high overlaps with previously selected boxes.

NonNeg Constrains the weights to be non-negative.
非シリアル化可能なデータセット
非シリアル化可能なデータセット
NoOp何もしません。
NotBroadcastableException Exception that indicates that static shapes are not able to broadcast among each other during arithmetic operations.
NotEqual Returns the truth value of (x != y) element-wise.
NotEqual.Options Optional attributes for NotEqual
NthElement <T extends TNumber > Finds values of the `n`-th order statistic for the last dimension.
NthElement.Options Optional attributes for NthElement

OneHot <U extends TType >ワンホットテンソルを返します。
OneHot.Options Optional attributes for OneHot
Ones <T extends TType > Initializer that generates tensors initialized to 1.
Ones <T extends TType > An operator creating a constant initialized with ones of the shape given by `dims`.
OnesLike <T extends TType > x と同じ形状と型を持つ 1 のテンソルを返します。
Op A logical unit of computation.
作戦防御
 Defines an operation. 
OpDef.ArgDef
 For describing inputs and outputs. 
OpDef.ArgDef.Builder
 For describing inputs and outputs. 
OpDef.ArgDefOrBuilder
OpDef.AttrDef
 Description of the graph-construction-time configuration of this
 Op. 
OpDef.AttrDef.Builder
 Description of the graph-construction-time configuration of this
 Op. 
OpDef.AttrDefOrBuilder
OpDef.Builder
 Defines an operation. 
OpDefOrBuilder
OpDefProtos
運用の廃止
 Information about version-dependent deprecation of an op
 
Protobuf type tensorflow.OpDeprecation
OpDeprecation.Builder
 Information about version-dependent deprecation of an op
 
Protobuf type tensorflow.OpDeprecation
OpDeprecationOrBuilder
Operand <T extends TType > Tensorflow操作のオペランドによって実装されたインターフェイス。
Operands Utilities for manipulating operand related types and lists.
手術Performs computation on Tensors.
OperationBuilder A builder for Operation s.
オペレーターAnnotation used by classes to make TensorFlow operations conveniently accessible via org.tensorflow.op.Ops or one of its groups.
OpList
 A collection of OpDefs
 
Protobuf type tensorflow.OpList
OpList.Builder
 A collection of OpDefs
 
Protobuf type tensorflow.OpList
OpListOrBuilder
OptimizeDataset Creates a dataset by applying optimizations to `input_dataset`.
OptimizeDataset.Options Optional attributes for OptimizeDataset
OptimizeDatasetV2関連する最適化を「input_dataset」に適用してデータセットを作成します。
OptimizeDatasetV2.Options Optional attributes for OptimizeDatasetV2
オプティマイザBase class for gradient optimizers.
Optimizer.GradAndVar <T extends TType > A class that holds a paired gradient and variable.
Optimizer.Options Optional attributes for Optimizer
OptimizerOptions
 Options passed to the graph optimizer
 
Protobuf type tensorflow.OptimizerOptions
OptimizerOptions.Builder
 Options passed to the graph optimizer
 
Protobuf type tensorflow.OptimizerOptions
OptimizerOptions.GlobalJitLevel
 Control the use of the compiler/jit. 
OptimizerOptions.Level
 Optimization level
 
Protobuf enum tensorflow.OptimizerOptions.Level
OptimizerOptionsOrBuilder
Optimizers Enumerator used to create a new Optimizer with default parameters.
OptionalFromValue Constructs an Optional variant from a tuple of tensors.
OptionalGetValue Returns the value stored in an Optional variant or raises an error if none exists.
OptionalHasValue Returns true if and only if the given Optional variant has a value.
OptionalNone Creates an Optional variant with no value.
OrderedMapClear Op removes all elements in the underlying container.
OrderedMapClear.Options Optional attributes for OrderedMapClear
OrderedMapIncompleteSize Op は、基になるコンテナー内の不完全な要素の数を返します。
OrderedMapIncompleteSize.Options Optional attributes for OrderedMapIncompleteSize
OrderedMapPeek Op peeks at the values at the specified key.
OrderedMapPeek.Options Optional attributes for OrderedMapPeek
OrderedMapSize Op は、基になるコンテナ内の要素の数を返します。
OrderedMapSize.Options Optional attributes for OrderedMapSize
OrderedMapStage Stage (key, values) in the underlying container which behaves like a ordered

associative container.

OrderedMapStage.Options Optional attributes for OrderedMapStage
OrderedMapUnstage Op removes and returns the values associated with the key

from the underlying container.

OrderedMapUnstage.Options Optional attributes for OrderedMapUnstage
OrderedMapUnstageNoKey Op removes and returns the (key, value) element with the smallest

key from the underlying container.

OrderedMapUnstageNoKey.Options Optional attributes for OrderedMapUnstageNoKey
OrdinalSelector TPUコアセレクターOp.
Orthogonal <T extends TFloating > Initializer that generates an orthogonal matrix.
OutfeedDequeue <T extends TType >計算出力から単一のテンソルを取得します。
OutfeedDequeue.Options Optional attributes for OutfeedDequeue
OutfeedDequeueTuple Retrieve multiple values from the computation outfeed.
OutfeedDequeueTuple.Options Optional attributes for OutfeedDequeueTuple
OutfeedDequeueTupleV2 Retrieve multiple values from the computation outfeed.
OutfeedDequeueV2 <T extends TType >計算出力から単一のテンソルを取得します。
OutfeedEnqueue Enqueue a Tensor on the computation outfeed.
OutfeedEnqueueTuple Enqueue multiple Tensor values on the computation outfeed.
Output <T extends TType > Operationによって生成されるテンソルへのシンボリック ハンドル。

P

Pad <T extends TType >テンソルをパディングします。
Pad <T extends TType > Wraps the XLA Pad operator, documented at

https://www.tensorflow.org/performance/xla/operation_semantics#pad .

PaddedBatchDataset Creates a dataset that batches and pads `batch_size` elements from the input.
PaddedBatchDataset.Options Optional attributes for PaddedBatchDataset
PaddingFifoQueue A queue that produces elements in first-in first-out order.
PaddingFifoQueue.Options Optional attributes for PaddingFifoQueue
PairValue
 Represents a (key, value) pair. 
PairValue.Builder
 Represents a (key, value) pair. 
PairValueOrBuilder
ParallelConcat <T extends TType > 'N' テンソルのリストを最初の次元に沿って連結します。
ParallelDynamicStitch <T extends TType > 「data」テンソルの値を単一のテンソルにインターリーブします。
ParameterizedTruncatedNormal <U extends TNumber >正規分布からランダムな値を出力します。
ParameterizedTruncatedNormal.Options Optional attributes for ParameterizedTruncatedNormal
ParseExample Transforms a vector of tf.Example protos (as strings) into typed tensors.
ParseExampleDataset DT_STRING のベクトルとして `Example` プロトを含む `input_dataset` を、解析された特徴を表す `Tensor` または `SparseTensor` オブジェクトのデータセットに変換します。
ParseExampleDataset.Options Optional attributes for ParseExampleDataset
ParseSequenceExample Transforms a vector of tf.io.SequenceExample protos (as strings) into typed tensors.
ParseSequenceExample.Options Optional attributes for ParseSequenceExample
ParseSingleExample Transforms a tf.Example proto (as a string) into typed tensors.
ParseSingleSequenceExample Transforms a scalar brain.SequenceExample proto (as strings) into typed tensors.
ParseSingleSequenceExample.Options Optional attributes for ParseSingleSequenceExample
ParseTensor <T extends TType > Transforms a serialized tensorflow.TensorProto proto into a Tensor.
PartitionedInput <T extends TType >分割された入力のリストをグループ化する演算。
PartitionedInput.Options Optional attributes for PartitionedInput
PartitionedOutput <T extends TType > An op that demultiplexes a tensor to be sharded by XLA to a list of partitioned

outputs outside the XLA computation.

PartitionedOutput.Options Optional attributes for PartitionedOutput
Placeholder <T extends TType >計算に入力される値のプレースホルダー op。
Placeholder.Options Optional attributes for Placeholder
PlaceholderWithDefault <T extends TType >出力が供給されない場合に `input` を通過するプレースホルダー op。
PlatformInfo Protobuf type tensorflow.PlatformInfo
PlatformInfo.Builder Protobuf type tensorflow.PlatformInfo
PlatformInfoOrBuilder
Poisson Computes the Poisson loss between labels and predictions.
Poisson <T extends TNumber > A metric that computes the poisson loss metric between labels and predictions.
Polygamma <T extends TNumber > Compute the polygamma function \\(\psi^{(n)}(x)\\)。
PopulationCount Computes element-wise population count (aka
PositionIterator
Pow <T extends TType > Computes the power of one value to another.
PrefetchDataset Creates a dataset that asynchronously prefetches elements from `input_dataset`.
PrefetchDataset.Options Optional attributes for PrefetchDataset
事前線形​​化1 つの Tensor 値を不透明なバリアント tensor に線形化する演算。
Prelinearize.Options Optional attributes for Prelinearize
事前線形​​化タプル複数の Tensor 値を不透明なバリアント tensor に線形化する操作。
PrelinearizeTuple.Options Optional attributes for PrelinearizeTuple
PreventGradient <T extends TType > An identity op that triggers an error if a gradient is requested.
PreventGradient.Options Optional attributes for PreventGradient
印刷するPrints a string scalar.
Print.Options Optional attributes for Print
PriorityQueue A queue that produces elements sorted by the first component value.
PriorityQueue.Options Optional attributes for PriorityQueue
プライベートスレッドプールデータセットカスタム スレッド プールを使用して「input_dataset」を計算するデータセットを作成します。
プライベートスレッドプールデータセットカスタム スレッド プールを使用して「input_dataset」を計算するデータセットを作成します。
Prod <T extends TType >テンソルの次元にわたる要素の積を計算します。
Prod.Options Optional attributes for Prod
ProfileOptions
 Next ID: 11
 
Protobuf type tensorflow.ProfileOptions
ProfileOptions.Builder
 Next ID: 11
 
Protobuf type tensorflow.ProfileOptions
ProfileOptions.DeviceType Protobuf enum tensorflow.ProfileOptions.DeviceType
ProfileOptionsOrBuilder
ProfilerOptionsProtos

Q

Qr <T extends TType > Computes the QR decompositions of one or more matrices.
Qr.Options Optional attributes for Qr
Quantize <T extends TType > Quantize the 'input' tensor of type float to 'output' tensor of type 'T'.
Quantize.Options Optional attributes for Quantize
QuantizeAndDequantize <T extends TNumber >テンソルを量子化してから逆量子化します。
QuantizeAndDequantize.Options Optional attributes for QuantizeAndDequantize
QuantizeAndDequantizeV3 <T extends TNumber >テンソルを量子化してから逆量子化します。
QuantizeAndDequantizeV3.Options Optional attributes for QuantizeAndDequantizeV3
QuantizeAndDequantizeV4 <T extends TNumber > Returns the gradient of `quantization.QuantizeAndDequantizeV4`.
QuantizeAndDequantizeV4.Options Optional attributes for QuantizeAndDequantizeV4
QuantizeAndDequantizeV4Grad <T extends TNumber > Returns the gradient of `QuantizeAndDequantizeV4`.
QuantizeAndDequantizeV4Grad.Options Optional attributes for QuantizeAndDequantizeV4Grad
QuantizedAdd <V extends TType > Returns x + y element-wise, working on quantized buffers.
QuantizedAvgPool <T extends TType > Produces the average pool of the input tensor for quantized types.
QuantizedBatchNormWithGlobalNormalization <U extends TType > Quantized Batch normalization.
QuantizedBiasAdd <V extends TType > Adds Tensor 'bias' to Tensor 'input' for Quantized types.
QuantizedConcat <T extends TType > Concatenates quantized tensors along one dimension.
QuantizedConv2d <V extends TType > Computes a 2D convolution given quantized 4D input and filter tensors.
QuantizedConv2d.Options Optional attributes for QuantizedConv2d
QuantizedConv2DAndRelu <V extends TType >
QuantizedConv2DAndRelu.Options Optional attributes for QuantizedConv2DAndRelu
QuantizedConv2DAndReluAndRequantize <V extends TType >
QuantizedConv2DAndReluAndRequantize.Options Optional attributes for QuantizedConv2DAndReluAndRequantize
QuantizedConv2DAndRequantize <V extends TType >
QuantizedConv2DAndRequantize.Options Optional attributes for QuantizedConv2DAndRequantize
QuantizedConv2DPerChannel <V extends TType > Computes QuantizedConv2D per channel.
QuantizedConv2DPerChannel.Options Optional attributes for QuantizedConv2DPerChannel
QuantizedConv2DWithBias <V extends TType >
QuantizedConv2DWithBias.Options Optional attributes for QuantizedConv2DWithBias
QuantizedConv2DWithBiasAndRelu <V extends TType >
QuantizedConv2DWithBiasAndRelu.Options Optional attributes for QuantizedConv2DWithBiasAndRelu
QuantizedConv2DWithBiasAndReluAndRequantize <W extends TType >
QuantizedConv2DWithBiasAndReluAndRequantize.Options Optional attributes for QuantizedConv2DWithBiasAndReluAndRequantize
QuantizedConv2DWithBiasAndRequantize <W extends TType >
QuantizedConv2DWithBiasAndRequantize.Options Optional attributes for QuantizedConv2DWithBiasAndRequantize
QuantizedConv2DWithBiasSignedSumAndReluAndRequantize <X extends TType >
QuantizedConv2DWithBiasSignedSumAndReluAndRequantize.Options Optional attributes for QuantizedConv2DWithBiasSignedSumAndReluAndRequantize
QuantizedConv2DWithBiasSumAndRelu <V extends TType >
QuantizedConv2DWithBiasSumAndRelu.Options Optional attributes for QuantizedConv2DWithBiasSumAndRelu
QuantizedConv2DWithBiasSumAndReluAndRequantize <X extends TType >
QuantizedConv2DWithBiasSumAndReluAndRequantize.Options Optional attributes for QuantizedConv2DWithBiasSumAndReluAndRequantize
QuantizedDepthwiseConv2D <V extends TType > Computes quantized depthwise Conv2D.
QuantizedDepthwiseConv2D.Options Optional attributes for QuantizedDepthwiseConv2D
QuantizedDepthwiseConv2DWithBias <V extends TType > Computes quantized depthwise Conv2D with Bias.
QuantizedDepthwiseConv2DWithBias.Options Optional attributes for QuantizedDepthwiseConv2DWithBias
QuantizedDepthwiseConv2DWithBiasAndRelu <V extends TType > Computes quantized depthwise Conv2D with Bias and Relu.
QuantizedDepthwiseConv2DWithBiasAndRelu.Options Optional attributes for QuantizedDepthwiseConv2DWithBiasAndRelu
QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize <W extends TType > Computes quantized depthwise Conv2D with Bias, Relu and Requantize.
QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize.Options Optional attributes for QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize
QuantizedInstanceNorm <T extends TType > Quantized Instance normalization.
QuantizedInstanceNorm.Options Optional attributes for QuantizedInstanceNorm
QuantizedMatMul <V extends TType > Perform a quantized matrix multiplication of `a` by the matrix `b`.
QuantizedMatMul.Options Optional attributes for QuantizedMatMul
QuantizedMatMulWithBias <W extends TType > Performs a quantized matrix multiplication of `a` by the matrix `b` with bias add.
QuantizedMatMulWithBias.Options Optional attributes for QuantizedMatMulWithBias
QuantizedMatMulWithBiasAndDequantize <W extends TNumber >
QuantizedMatMulWithBiasAndDequantize.Options Optional attributes for QuantizedMatMulWithBiasAndDequantize
QuantizedMatMulWithBiasAndRelu <V extends TType > Perform a quantized matrix multiplication of `a` by the matrix `b` with bias add and relu fusion.
QuantizedMatMulWithBiasAndRelu.Options Optional attributes for QuantizedMatMulWithBiasAndRelu
QuantizedMatMulWithBiasAndReluAndRequantize <W extends TType > Perform a quantized matrix multiplication of `a` by the matrix `b` with bias add and relu and requantize fusion.
QuantizedMatMulWithBiasAndReluAndRequantize.Options Optional attributes for QuantizedMatMulWithBiasAndReluAndRequantize
QuantizedMatMulWithBiasAndRequantize <W extends TType >
QuantizedMatMulWithBiasAndRequantize.Options Optional attributes for QuantizedMatMulWithBiasAndRequantize
QuantizedMaxPool <T extends TType > Produces the max pool of the input tensor for quantized types.
QuantizedMul <V extends TType > Returns x * y element-wise, working on quantized buffers.
QuantizeDownAndShrinkRange <U extends TType > Convert the quantized 'input' tensor into a lower-precision 'output', using the

actual distribution of the values to maximize the usage of the lower bit depth and adjusting the output min and max ranges accordingly.

QuantizedRelu <U extends TType > Computes Quantized Rectified Linear: `max(features, 0)`
QuantizedRelu6 <U extends TType > Computes Quantized Rectified Linear 6: `min(max(features, 0), 6)`
QuantizedReluX <U extends TType > Computes Quantized Rectified Linear X: `min(max(features, 0), max_value)`
QuantizedReshape <T extends TType > Reshapes a quantized tensor as per the Reshape op.
QuantizedResizeBilinear <T extends TType > Resize quantized `images` to `size` using quantized bilinear interpolation.
QuantizedResizeBilinear.Options Optional attributes for QuantizedResizeBilinear
QueueClose Closes the given queue.
QueueClose.Options Optional attributes for QueueClose
QueueDequeue Dequeues a tuple of one or more tensors from the given queue.
QueueDequeue.Options Optional attributes for QueueDequeue
QueueDequeueMany Dequeues `n` tuples of one or more tensors from the given queue.
QueueDequeueMany.Options Optional attributes for QueueDequeueMany
QueueDequeueUpTo Dequeues `n` tuples of one or more tensors from the given queue.
QueueDequeueUpTo.Options Optional attributes for QueueDequeueUpTo
キューエンキュー1 つ以上のテンソルのタプルを指定されたキューにエンキューします。
QueueEnqueue.Options Optional attributes for QueueEnqueue
QueueEnqueueMany Enqueues zero or more tuples of one or more tensors in the given queue.
QueueEnqueueMany.Options Optional attributes for QueueEnqueueMany
QueueIsClosed Returns true if queue is closed.
QueueRunnerDef
 Protocol buffer representing a QueueRunner. 
QueueRunnerDef.Builder
 Protocol buffer representing a QueueRunner. 
QueueRunnerDefOrBuilder
QueueRunnerProtos
QueueSize Computes the number of elements in the given queue.

R

RaggedBincount <U extends TNumber >整数配列内の各値の出現数をカウントします。
RaggedBincount.Options Optional attributes for RaggedBincount
RaggedCountSparseOutput <U extends TNumber > Performs sparse-output bin counting for a ragged tensor input.
RaggedCountSparseOutput.Options Optional attributes for RaggedCountSparseOutput
RaggedCross <T extends TType , U extends TNumber > Generates a feature cross from a list of tensors, and returns it as a RaggedTensor.
RaggedGather <T extends TNumber , U extends TType > Gather ragged slices from `params` axis `0` according to `indices`.
RaggedRange <U extends TNumber , T extends TNumber > Returns a `RaggedTensor` containing the specified sequences of numbers.
RaggedTensorFromVariant <U extends TNumber , T extends TType > Decodes a `variant` Tensor into a `RaggedTensor`.
RaggedTensorToSparse <U extends TType > Converts a `RaggedTensor` into a `SparseTensor` with the same values.
RaggedTensorToTensor <U extends TType >不規則なテンソルから密なテンソルを作成し、場合によってはその形状を変更します。
RaggedTensorToVariant `RaggedTensor` を `variant` Tensor にエンコードします。
RaggedTensorToVariantGradient <U extends TType > `RaggedTensorToVariant` の勾配を計算するために使用されるヘルパー。
RandomCrop <T extends TNumber > Randomly crop `image`.
RandomCrop.Options Optional attributes for RandomCrop
RandomDataset擬似乱数を返すデータセットを作成します。
RandomDataset擬似乱数を返すデータセットを作成します。
RandomGamma <U extends TNumber > Outputs random values from the Gamma distribution(s) described by alpha.
RandomGamma.Options Optional attributes for RandomGamma
RandomGammaGrad <T extends TNumber > Computes the derivative of a Gamma random sample wrt
RandomNormal <T extends TFloating > Initializer that generates tensors with a normal distribution.
RandomPoisson <V extends TNumber > Outputs random values from the Poisson distribution(s) described by rate.
RandomPoisson.Options Optional attributes for RandomPoisson
RandomShuffle <T extends TType > Randomly shuffles a tensor along its first dimension.
RandomShuffle.Options Optional attributes for RandomShuffle
RandomShuffleQueue A queue that randomizes the order of elements.
RandomShuffleQueue.Options Optional attributes for RandomShuffleQueue
RandomStandardNormal <U extends TNumber >正規分布からランダムな値を出力します。
RandomStandardNormal.Options Optional attributes for RandomStandardNormal
RandomUniform <T extends TNumber > Initializer that generates tensors with a uniform distribution.
RandomUniform <U extends TNumber >一様分布からランダムな値を出力します。
RandomUniform.Options Optional attributes for RandomUniform
RandomUniformInt <U extends TNumber >一様分布からランダムな整数を出力します。
RandomUniformInt.Options Optional attributes for RandomUniformInt
Range <T extends TNumber >一連の数値を作成します。
RangeDataset Creates a dataset with a range of values.
ランクテンソルのランクを返します。
RawDataBufferFactory Factory of raw data buffers
RawOp A base class for Op implementations that are backed by a single Operation .
RawTensor A tensor which memory has not been mapped to a data space directly accessible from the JVM.
ReaderBaseProtos
ReaderBaseState
 For serializing and restoring the state of ReaderBase, see
 reader_base.h for details. 
ReaderBaseState.Builder
 For serializing and restoring the state of ReaderBase, see
 reader_base.h for details. 
ReaderBaseStateOrBuilder
ReaderNumRecordsProduced Returns the number of records this Reader has produced.
ReaderNumWorkUnitsCompleted Returns the number of work units this Reader has finished processing.
ReaderRead Returns the next record (key, value pair) produced by a Reader.
リーダー読み取り上までReturns up to `num_records` (key, value) pairs produced by a Reader.
ReaderReset Restore a Reader to its initial clean state.
ReaderRestoreState Restore a reader to a previously saved state.
ReaderSerializeState Produce a string tensor that encodes the state of a Reader.
ReadFile Reads and outputs the entire contents of the input filename.
ReadVariableOp <T extends TType >変数の値を読み取ります。
Real <U extends TNumber > Returns the real part of a complex number.
RealDiv <T extends TType >実数型の場合は要素ごとに x / y を返します。
再バッチデータセットバッチサイズを変更するデータセットを作成します。
再バッチデータセットバッチサイズを変更するデータセットを作成します。
RebatchDataset.Options Optional attributes for RebatchDataset
RebatchDataset.Options Optional attributes for RebatchDataset
RebatchDatasetV2バッチサイズを変更するデータセットを作成します。
Reciprocal <T extends TType > Computes the reciprocal of x element-wise.
ReciprocalGrad <T extends TType > Computes the gradient for the inverse of `x` wrt its input.
RecordInput Emits randomized records.
RecordInput.Options Optional attributes for RecordInput
Recv <T extends TType > recv_device 上の send_device から名前付きテンソルを受け取ります。
Recv <T extends TType > Receives the named tensor from another XLA computation.
Recv.Options Optional attributes for Recv
RecvTPUEmbeddingActivations An op that receives embedding activations on the TPU.
Reduce <T extends TNumber > Encapsulates metrics that perform a reduce operation on the metric values.
Reduce <T extends TNumber >同じタイプと形状の複数のテンソルを相互に削減します。
Reduce.Options Optional attributes for Reduce
すべてを減らすテンソルの次元全体で要素の「論理積」を計算します。
ReduceAll.Options Optional attributes for ReduceAll
任意の削減テンソルの次元にわたる要素の「論理和」を計算します。
ReduceAny.Options Optional attributes for ReduceAny
ReduceJoin Joins a string Tensor across the given dimensions.
ReduceJoin.Options Optional attributes for ReduceJoin
ReduceMax <T extends TType >テンソルの次元全体の要素の最大値を計算します。
ReduceMax.Options Optional attributes for ReduceMax
ReduceMin <T extends TType >テンソルの次元全体で要素の最小値を計算します。
ReduceMin.Options Optional attributes for ReduceMin
ReduceProd <T extends TType >テンソルの次元にわたる要素の積を計算します。
ReduceProd.Options Optional attributes for ReduceProd
ReduceSum <T extends TType >テンソルの次元にわたる要素の合計を計算します。
ReduceSum.Options Optional attributes for ReduceSum
ReduceV2 <T extends TNumber >同じタイプと形状の複数のテンソルを相互に削減します。
ReduceV2.Options Optional attributes for ReduceV2
削減Type of Loss Reduction

AUTO indicates that the reduction option will be determined by the usage context.

RefEnter <T extends TType >子フレームを作成または検索し、子フレームで「data」を使用できるようにします。
RefEnter.Options Optional attributes for RefEnter
RefExit <T extends TType >現在のフレームを終了して親フレームに戻ります。
RefIdentity <T extends TType >入力参照テンソルと同じ参照テンソルを返します。
RefMerge <T extends TType > Forwards the value of an available tensor from `inputs` to `output`.
RefNextIteration <T extends TType >入力を次の反復で使用できるようにします。
RefSelect <T extends TType > `inputs` の `index` 番目の要素を `output` に転送します。
RefSwitch <T extends TType > Forwards the ref tensor `data` to the output port determined by `pred`.
RegexFullMatch Check if the input matches the regex pattern.
RegexReplace Replaces matches of the `pattern` regular expression in `input` with the replacement string provided in `rewrite`.
RegexReplace.Options Optional attributes for RegexReplace
データセットの登録データセットを tf.data サービスに登録します。
RelativeDimensionalSpace
Relu <T extends TType > Computes rectified linear: `max(features, 0)`.
ReLU <T extends TNumber > Rectified Linear Unit(ReLU) activation.
Relu6 <T extends TNumber > Computes rectified linear 6: `min(max(features, 0), 6)`.
Relu6Grad <T extends TNumber > Computes rectified linear 6 gradients for a Relu6 operation.
ReluGrad <T extends TNumber > Computes rectified linear gradients for a Relu operation.
RemoteFusedGraphExecute Execute a sub graph on a remote processor.
RemoteFusedGraphExecuteInfo
 Protocol buffer representing a handle to a tensorflow resource. 
RemoteFusedGraphExecuteInfo.Builder
 Protocol buffer representing a handle to a tensorflow resource. 
RemoteFusedGraphExecuteInfo.TensorShapeTypeProto Protobuf type tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto
RemoteFusedGraphExecuteInfo.TensorShapeTypeProto.Builder Protobuf type tensorflow.RemoteFusedGraphExecuteInfo.TensorShapeTypeProto
RemoteFusedGraphExecuteInfo.TensorShapeTypeProtoOrBuilder
RemoteFusedGraphExecuteInfoOrBuilder
RemoteFusedGraphExecuteInfoProto
RemoteProfilerSessionManagerOptions
 Options for remote profiler session manager. 
RemoteProfilerSessionManagerOptions.Builder
 Options for remote profiler session manager. 
RemoteProfilerSessionManagerOptionsOrBuilder
RemoteTensorHandle Protobuf type tensorflow.eager.RemoteTensorHandle
RemoteTensorHandle.Builder Protobuf type tensorflow.eager.RemoteTensorHandle
RemoteTensorHandleOrBuilder
RemoteTensorHandleProtos
RepeatDataset Creates a dataset that emits the outputs of `input_dataset` `count` times.
ReplicaId Replica ID.
ReplicatedInput <T extends TType > N 個の入力を N ウェイ複製 TPU 計算に接続します。
ReplicatedInput.Options Optional attributes for ReplicatedInput
ReplicatedOutput <T extends TType > Connects N outputs from an N-way replicated TPU computation.
ReplicateMetadata Metadata indicating how the TPU computation should be replicated.
ReplicateMetadata.Options Optional attributes for ReplicateMetadata
RequantizationRange Computes a range that covers the actual values present in a quantized tensor.
RequantizationRangePerChannel Computes requantization range per channel.
Requantize <U extends TType > Converts the quantized `input` tensor into a lower-precision `output`.
RequantizePerChannel <U extends TType > Requantizes input with min and max values known per channel.
RequestedExitCode Protobuf type tensorflow.RequestedExitCode
RequestedExitCode.Builder Protobuf type tensorflow.RequestedExitCode
RequestedExitCodeOrBuilder
Reshape <T extends TType >テンソルを再形成します。
ResizeArea Resize `images` to `size` using area interpolation.
ResizeArea.Options Optional attributes for ResizeArea
ResizeBicubic Resize `images` to `size` using bicubic interpolation.
ResizeBicubic.Options Optional attributes for ResizeBicubic
ResizeBicubicGrad <T extends TNumber > Computes the gradient of bicubic interpolation.
ResizeBicubicGrad.Options Optional attributes for ResizeBicubicGrad
ResizeBilinear Resize `images` to `size` using bilinear interpolation.
ResizeBilinear.Options Optional attributes for ResizeBilinear
ResizeBilinearGrad <T extends TNumber > Computes the gradient of bilinear interpolation.
ResizeBilinearGrad.Options Optional attributes for ResizeBilinearGrad
ResizeNearestNeighbor <T extends TNumber > Resize `images` to `size` using nearest neighbor interpolation.
ResizeNearestNeighbor.Options Optional attributes for ResizeNearestNeighbor
ResizeNearestNeighborGrad <T extends TNumber > Computes the gradient of nearest neighbor interpolation.
ResizeNearestNeighborGrad.Options Optional attributes for ResizeNearestNeighborGrad
ResourceAccumulatorApplyGradient Applies a gradient to a given accumulator.
ResourceAccumulatorNumAccumulated指定されたアキュムレータに集約された勾配の数を返します。
ResourceAccumulatorSetGlobalStep Updates the accumulator with a new value for global_step.
ResourceAccumulatorTakeGradient <T extends TType >指定された ConditionalAccumulator の平均勾配を抽出します。
リソースApplyAdadelta adadelta スキームに従って「*var」を更新します。
ResourceApplyAdadelta.Options Optional attributes for ResourceApplyAdadelta
ResourceApplyAdagrad adagrad スキームに従って「*var」を更新します。
ResourceApplyAdagrad.Options Optional attributes for ResourceApplyAdagrad
ResourceApplyAdagradDa Update '*var' according to the proximal adagrad scheme.
ResourceApplyAdagradDa.Options Optional attributes for ResourceApplyAdagradDa
ResourceApplyAdam Adam アルゴリズムに従って「*var」を更新します。
ResourceApplyAdam.Options Optional attributes for ResourceApplyAdam
ResourceApplyAdaMax Update '*var' according to the AdaMax algorithm.
ResourceApplyAdaMax.Options Optional attributes for ResourceApplyAdaMax
リソース適用AdamWithAmsgrad Adam アルゴリズムに従って「*var」を更新します。
ResourceApplyAdamWithAmsgrad.Options Optional attributes for ResourceApplyAdamWithAmsgrad
ResourceApplyAddSign Update '*var' according to the AddSign update.
ResourceApplyAddSign.Options Optional attributes for ResourceApplyAddSign
ResourceApplyCenteredRmsProp Update '*var' according to the centered RMSProp algorithm.
ResourceApplyCenteredRmsProp.Options Optional attributes for ResourceApplyCenteredRmsProp
ResourceApplyFtrl Update '*var' according to the Ftrl-proximal scheme.
ResourceApplyFtrl.Options Optional attributes for ResourceApplyFtrl
ResourceApplyGradientDescent Update '*var' by subtracting 'alpha' * 'delta' from it.
ResourceApplyGradientDescent.Options Optional attributes for ResourceApplyGradientDescent
ResourceApplyKerasMomentum Update '*var' according to the momentum scheme.
ResourceApplyKerasMomentum.Options Optional attributes for ResourceApplyKerasMomentum
ResourceApplyMomentum Update '*var' according to the momentum scheme.
ResourceApplyMomentum.Options Optional attributes for ResourceApplyMomentum
ResourceApplyPowerSign Update '*var' according to the AddSign update.
ResourceApplyPowerSign.Options Optional attributes for ResourceApplyPowerSign
ResourceApplyProximalAdagrad Update '*var' and '*accum' according to FOBOS with Adagrad learning rate.
ResourceApplyProximalAdagrad.Options Optional attributes for ResourceApplyProximalAdagrad
ResourceApplyProximalGradientDescent Update '*var' as FOBOS algorithm with fixed learning rate.
ResourceApplyProximalGradientDescent.Options Optional attributes for ResourceApplyProximalGradientDescent
ResourceApplyRmsProp Update '*var' according to the RMSProp algorithm.
ResourceApplyRmsProp.Options Optional attributes for ResourceApplyRmsProp
リソース条件付きアキュムレータ勾配を集約するための条件付きアキュムレータ。
ResourceConditionalAccumulator.Options Optional attributes for ResourceConditionalAccumulator
ResourceCountUpTo <T extends TNumber > 「limit」に達するまで「resource」が指す変数をインクリメントします。
ResourceDtypeAndShape Protobuf type tensorflow.eager.ResourceDtypeAndShape
ResourceDtypeAndShape.Builder Protobuf type tensorflow.eager.ResourceDtypeAndShape
ResourceDtypeAndShapeOrBuilder
ResourceGather <U extends TType > 「インデックス」に従って「リソース」が指す変数からスライスを収集します。
ResourceGather.Options Optional attributes for ResourceGather
ResourceGatherNd <U extends TType >
ResourceHandle
ResourceHandleProto
 Protocol buffer representing a handle to a tensorflow resource. 
ResourceHandleProto.Builder
 Protocol buffer representing a handle to a tensorflow resource. 
ResourceHandleProto.DtypeAndShape
 Protocol buffer representing a pair of (data type, tensor shape). 
ResourceHandleProto.DtypeAndShape.Builder
 Protocol buffer representing a pair of (data type, tensor shape). 
ResourceHandleProto.DtypeAndShapeOrBuilder
ResourceHandleProtoOrBuilder
ResourceScatterAdd Adds sparse updates to the variable referenced by `resource`.
ResourceScatterDiv Divides sparse updates into the variable referenced by `resource`.
ResourceScatterMax Reduces sparse updates into the variable referenced by `resource` using the `max` operation.
ResourceScatterMin Reduces sparse updates into the variable referenced by `resource` using the `min` operation.
ResourceScatterMul Multiplies sparse updates into the variable referenced by `resource`.
ResourceScatterNdAdd変数内の個々の値またはスライスにスパース加算を適用します。
ResourceScatterNdAdd.Options Optional attributes for ResourceScatterNdAdd
ResourceScatterNdMax
ResourceScatterNdMax.Options Optional attributes for ResourceScatterNdMax
ResourceScatterNdMin
ResourceScatterNdMin.Options Optional attributes for ResourceScatterNdMin
リソースScatterNdSubスパース減算を変数内の個々の値またはスライスに適用します。
ResourceScatterNdSub.Options Optional attributes for ResourceScatterNdSub
ResourceScatterNdUpdate与えられた範囲内の個々の値またはスライスにスパースの「更新」を適用します。

「インデックス」に従って変数。

ResourceScatterNdUpdate.Options Optional attributes for ResourceScatterNdUpdate
ResourceScatterSub Subtracts sparse updates from the variable referenced by `resource`.
ResourceScatterUpdate Assigns sparse updates to the variable referenced by `resource`.
ResourceSparseApplyAdadelta var: Variable() から取得する必要があります。
ResourceSparseApplyAdadelta.Options Optional attributes for ResourceSparseApplyAdadelta
ResourceSparseApplyAdagrad adagrad スキームに従って、「*var」および「*accum」内の関連エントリを更新します。
ResourceSparseApplyAdagrad.Options Optional attributes for ResourceSparseApplyAdagrad
ResourceSparseApplyAdagradDa Update entries in '*var' and '*accum' according to the proximal adagrad scheme.
ResourceSparseApplyAdagradDa.Options Optional attributes for ResourceSparseApplyAdagradDa
ResourceSparseApplyAdagradV2 adagrad スキームに従って、「*var」および「*accum」内の関連エントリを更新します。
ResourceSparseApplyAdagradV2.Options Optional attributes for ResourceSparseApplyAdagradV2
ResourceSparseApplyCenteredRmsProp Update '*var' according to the centered RMSProp algorithm.
ResourceSparseApplyCenteredRmsProp.Options Optional attributes for ResourceSparseApplyCenteredRmsProp
ResourceSparseApplyFtrl Update relevant entries in '*var' according to the Ftrl-proximal scheme.
ResourceSparseApplyFtrl.Options Optional attributes for ResourceSparseApplyFtrl
ResourceSparseApplyKerasMomentum Update relevant entries in '*var' and '*accum' according to the momentum scheme.
ResourceSparseApplyKerasMomentum.Options Optional attributes for ResourceSparseApplyKerasMomentum
ResourceSparseApplyMomentum Update relevant entries in '*var' and '*accum' according to the momentum scheme.
ResourceSparseApplyMomentum.Options Optional attributes for ResourceSparseApplyMomentum
ResourceSparseApplyProximalAdagrad Sparse update entries in '*var' and '*accum' according to FOBOS algorithm.
ResourceSparseApplyProximalAdagrad.Options Optional attributes for ResourceSparseApplyProximalAdagrad
ResourceSparseApplyProximalGradientDescent Sparse update '*var' as FOBOS algorithm with fixed learning rate.
ResourceSparseApplyProximalGradientDescent.Options Optional attributes for ResourceSparseApplyProximalGradientDescent
ResourceSparseApplyRmsProp Update '*var' according to the RMSProp algorithm.
ResourceSparseApplyRmsProp.Options Optional attributes for ResourceSparseApplyRmsProp
ResourceStridedSliceAssign `value` を `ref` のスライスされた左辺値参照に代入します。
ResourceStridedSliceAssign.Options Optional attributes for ResourceStridedSliceAssign
復元するRestores tensors from a V2 checkpoint.
RestoreSlice <T extends TType > Restores a tensor from checkpoint files.
RestoreSlice.Options Optional attributes for RestoreSlice
RetrieveTPUEmbeddingAdadeltaParameters Retrieve Adadelta embedding parameters.
RetrieveTPUEmbeddingAdadeltaParameters.Options Optional attributes for RetrieveTPUEmbeddingAdadeltaParameters
RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug Retrieve Adadelta embedding parameters with debug support.
RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug.Options Optional attributes for RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug
RetrieveTPUEmbeddingAdagradParameters Retrieve Adagrad embedding parameters.
RetrieveTPUEmbeddingAdagradParameters.Options Optional attributes for RetrieveTPUEmbeddingAdagradParameters
RetrieveTPUEmbeddingAdagradParametersGradAccumDebug Retrieve Adagrad embedding parameters with debug support.
RetrieveTPUEmbeddingAdagradParametersGradAccumDebug.Options Optional attributes for RetrieveTPUEmbeddingAdagradParametersGradAccumDebug
RetrieveTPUEmbeddingADAMParameters Retrieve ADAM embedding parameters.
RetrieveTPUEmbeddingADAMParameters.Options Optional attributes for RetrieveTPUEmbeddingADAMParameters
RetrieveTPUEmbeddingADAMParametersGradAccumDebug Retrieve ADAM embedding parameters with debug support.
RetrieveTPUEmbeddingADAMParametersGradAccumDebug.Options Optional attributes for RetrieveTPUEmbeddingADAMParametersGradAccumDebug
RetrieveTPUEmbeddingCenteredRMSPropParameters Retrieve centered RMSProp embedding parameters.
RetrieveTPUEmbeddingCenteredRMSPropParameters.Options Optional attributes for RetrieveTPUEmbeddingCenteredRMSPropParameters
RetrieveTPUEmbeddingFTRLParameters Retrieve FTRL embedding parameters.
RetrieveTPUEmbeddingFTRLParameters.Options Optional attributes for RetrieveTPUEmbeddingFTRLParameters
RetrieveTPUEmbeddingFTRLParametersGradAccumDebug Retrieve FTRL embedding parameters with debug support.
RetrieveTPUEmbeddingFTRLParametersGradAccumDebug.Options Optional attributes for RetrieveTPUEmbeddingFTRLParametersGradAccumDebug
RetrieveTPUEmbeddingMDLAdagradLightParameters Retrieve MDL Adagrad Light embedding parameters.
RetrieveTPUEmbeddingMDLAdagradLightParameters.Options Optional attributes for RetrieveTPUEmbeddingMDLAdagradLightParameters
RetrieveTPUEmbeddingMomentumParameters Retrieve Momentum embedding parameters.
RetrieveTPUEmbeddingMomentumParameters.Options Optional attributes for RetrieveTPUEmbeddingMomentumParameters
RetrieveTPUEmbeddingMomentumParametersGradAccumDebug Retrieve Momentum embedding parameters with debug support.
RetrieveTPUEmbeddingMomentumParametersGradAccumDebug.Options Optional attributes for RetrieveTPUEmbeddingMomentumParametersGradAccumDebug
RetrieveTPUEmbeddingProximalAdagradParameters Retrieve proximal Adagrad embedding parameters.
RetrieveTPUEmbeddingProximalAdagradParameters.Options Optional attributes for RetrieveTPUEmbeddingProximalAdagradParameters
RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug Retrieve proximal Adagrad embedding parameters with debug support.
RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug.Options Optional attributes for RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug
RetrieveTPUEmbeddingProximalYogiParameters
RetrieveTPUEmbeddingProximalYogiParameters.Options Optional attributes for RetrieveTPUEmbeddingProximalYogiParameters
RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug
RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug.Options Optional attributes for RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug
RetrieveTPUEmbeddingRMSPropParameters Retrieve RMSProp embedding parameters.
RetrieveTPUEmbeddingRMSPropParameters.Options Optional attributes for RetrieveTPUEmbeddingRMSPropParameters
RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug Retrieve RMSProp embedding parameters with debug support.
RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug.Options Optional attributes for RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug
TPUEmbeddingStochasticGradientDescentパラメータの取得SGD 埋め込みパラメータを取得します。
RetrieveTPUEmbeddingStochasticGradientDescentParameters.Options Optional attributes for RetrieveTPUEmbeddingStochasticGradientDescentParameters
RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug Retrieve SGD embedding parameters with debug support.
RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug.Options Optional attributes for RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug
Reverse <T extends TType >テンソルの特定の次元を反転します。
ReverseSequence <T extends TType >可変長スライスを反転します。
ReverseSequence.Options Optional attributes for ReverseSequence
RewriterConfig
 Graph rewriting is experimental and subject to change, not covered by any
 API stability guarantees. 
RewriterConfig.Builder
 Graph rewriting is experimental and subject to change, not covered by any
 API stability guarantees. 
RewriterConfig.CpuLayout
 Enum for layout conversion between NCHW and NHWC on CPU. 
RewriterConfig.CustomGraphOptimizer
 Message to describe custom graph optimizer and its parameters
 
Protobuf type tensorflow.RewriterConfig.CustomGraphOptimizer
RewriterConfig.CustomGraphOptimizer.Builder
 Message to describe custom graph optimizer and its parameters
 
Protobuf type tensorflow.RewriterConfig.CustomGraphOptimizer
RewriterConfig.CustomGraphOptimizerOrBuilder
RewriterConfig.MemOptType Protobuf enum tensorflow.RewriterConfig.MemOptType
RewriterConfig.NumIterationsType
 Enum controlling the number of times to run optimizers. 
RewriterConfig.Toggle Protobuf enum tensorflow.RewriterConfig.Toggle
RewriterConfigOrBuilder
RewriterConfigProtos
Rfft <U extends TType > Real-valued fast Fourier transform.
Rfft2d <U extends TType > 2D real-valued fast Fourier transform.
Rfft3d <U extends TType > 3D real-valued fast Fourier transform.
RgbToHsv <T extends TNumber > Converts one or more images from RGB to HSV.
RightShift <T extends TNumber > Elementwise computes the bitwise right-shift of `x` and `y`.
Rint <T extends TNumber > Returns element-wise integer closest to x.
RMSProp Optimizer that implements the RMSProp algorithm.
RngReadAndSkipカウンタベースの RNG のカウンタを進めます。
RngSkipカウンタベースの RNG のカウンタを進めます。
Roll <T extends TType >テンソルの要素を軸に沿って回転させます。
Round <T extends TType > Rounds the values of a tensor to the nearest integer, element-wise.
Rpc Perform batches of RPC requests.
Rpc.Options Optional attributes for Rpc
RPCOptions Protobuf type tensorflow.RPCOptions
RPCOptions.Builder Protobuf type tensorflow.RPCOptions
RPCOptionsOrBuilder
Rsqrt <T extends TType > Computes reciprocal of square root of x element-wise.
RsqrtGrad <T extends TType > Computes the gradient for the rsqrt of `x` wrt its input.
RunConfiguration
 Run-specific items such as arguments to the test / benchmark. 
RunConfiguration.Builder
 Run-specific items such as arguments to the test / benchmark. 
RunConfigurationOrBuilder
RunMetadata
 Metadata output (i.e., non-Tensor) for a single Run() call. 
RunMetadata.Builder
 Metadata output (i.e., non-Tensor) for a single Run() call. 
RunMetadata.FunctionGraphs Protobuf type tensorflow.RunMetadata.FunctionGraphs
RunMetadata.FunctionGraphs.Builder Protobuf type tensorflow.RunMetadata.FunctionGraphs
RunMetadata.FunctionGraphsOrBuilder
RunMetadataOrBuilder
RunOptions
 Options for a single Run() call. 
RunOptions.Builder
 Options for a single Run() call. 
RunOptions.Experimental
 Everything inside Experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat. 
RunOptions.Experimental.Builder
 Everything inside Experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat. 
RunOptions.Experimental.RunHandlerPoolOptions
 Options for run handler thread pool. 
RunOptions.Experimental.RunHandlerPoolOptions.Builder
 Options for run handler thread pool. 
RunOptions.Experimental.RunHandlerPoolOptionsOrBuilder
RunOptions.ExperimentalOrBuilder
RunOptions.TraceLevel
 TODO(pbar) Turn this into a TraceOptions proto which allows
 tracing to be controlled in a more orthogonal manner?
 
Protobuf enum tensorflow.RunOptions.TraceLevel
RunOptionsOrBuilder

S

SampleDistortedBoundingBox <T extends TNumber > Generate a single randomly distorted bounding box for an image.
SampleDistortedBoundingBox.Options Optional attributes for SampleDistortedBoundingBox
サンプリングデータセット別のデータセットの内容のベルヌーイ サンプルを取得するデータセットを作成します。
保存Saves tensors in V2 checkpoint format.
SaveableObject Protobuf type tensorflow.SaveableObject
SaveableObject.Builder Protobuf type tensorflow.SaveableObject
SaveableObjectOrBuilder
SavedAsset
 A SavedAsset points to an asset in the MetaGraph. 
SavedAsset.Builder
 A SavedAsset points to an asset in the MetaGraph. 
SavedAssetOrBuilder
SavedBareConcreteFunction Protobuf type tensorflow.SavedBareConcreteFunction
SavedBareConcreteFunction.Builder Protobuf type tensorflow.SavedBareConcreteFunction
SavedBareConcreteFunctionOrBuilder
SavedConcreteFunction
 Stores low-level information about a concrete function. 
SavedConcreteFunction.Builder
 Stores low-level information about a concrete function. 
SavedConcreteFunctionOrBuilder
SavedConstant Protobuf type tensorflow.SavedConstant
SavedConstant.Builder Protobuf type tensorflow.SavedConstant
SavedConstantOrBuilder
SavedFunction
 A function with multiple signatures, possibly with non-Tensor arguments. 
SavedFunction.Builder
 A function with multiple signatures, possibly with non-Tensor arguments. 
SavedFunctionOrBuilder
SavedModel
 SavedModel is the high level serialization format for TensorFlow Models. 
SavedModel.Builder
 SavedModel is the high level serialization format for TensorFlow Models. 
SavedModelBundle SavedModelBundle represents a model loaded from storage.
SavedModelBundle.Exporter Options for exporting a SavedModel.
SavedModelBundle.Loader Options for loading a SavedModel.
SavedModelOrBuilder
SavedModelProtos
SavedObject Protobuf type tensorflow.SavedObject
SavedObject.Builder Protobuf type tensorflow.SavedObject
SavedObject.KindCase
保存されたオブジェクトグラフProtobuf type tensorflow.SavedObjectGraph
SavedObjectGraph.Builder Protobuf type tensorflow.SavedObjectGraph
保存されたオブジェクトグラフまたはビルダー
SavedObjectGraphProtos
SavedObjectOrBuilder
SavedResource
 A SavedResource represents a TF object that holds state during its lifetime. 
SavedResource.Builder
 A SavedResource represents a TF object that holds state during its lifetime. 
SavedResourceOrBuilder
SavedSlice
 Saved tensor slice: it stores the name of the tensors, the slice, and the
 raw data. 
SavedSlice.Builder
 Saved tensor slice: it stores the name of the tensors, the slice, and the
 raw data. 
SavedSliceMeta
 Metadata describing the set of slices of the same tensor saved in a
 checkpoint file. 
SavedSliceMeta.Builder
 Metadata describing the set of slices of the same tensor saved in a
 checkpoint file. 
SavedSliceMetaOrBuilder
SavedSliceOrBuilder
SavedTensorSliceMeta
 Metadata describing the set of tensor slices saved in a checkpoint file. 
SavedTensorSliceMeta.Builder
 Metadata describing the set of tensor slices saved in a checkpoint file. 
SavedTensorSliceMetaOrBuilder
SavedTensorSliceProtos
SavedTensorSlices
 Each record in a v3 checkpoint file is a serialized SavedTensorSlices
 message. 
SavedTensorSlices.Builder
 Each record in a v3 checkpoint file is a serialized SavedTensorSlices
 message. 
SavedTensorSlicesOrBuilder
SavedUserObject
 A SavedUserObject is an object (in the object-oriented language of the
 TensorFlow program) of some user- or framework-defined class other than
 those handled specifically by the other kinds of SavedObjects. 
SavedUserObject.Builder
 A SavedUserObject is an object (in the object-oriented language of the
 TensorFlow program) of some user- or framework-defined class other than
 those handled specifically by the other kinds of SavedObjects. 
SavedUserObjectOrBuilder
SavedVariable
 Represents a Variable that is initialized by loading the contents from the
 checkpoint. 
SavedVariable.Builder
 Represents a Variable that is initialized by loading the contents from the
 checkpoint. 
SavedVariableOrBuilder
セーバーデフ
 Protocol buffer representing the configuration of a Saver. 
SaverDef.Builder
 Protocol buffer representing the configuration of a Saver. 
SaverDef.CheckpointFormatVersion
 A version number that identifies a different on-disk checkpoint format. 
SaverDefOrBuilder
SaverProtos
SaveSliceInfoDef Protobuf type tensorflow.SaveSliceInfoDef
SaveSliceInfoDef.Builder Protobuf type tensorflow.SaveSliceInfoDef
SaveSliceInfoDefOrBuilder
SaveSlices Saves input tensors slices to disk.
ScalarSummary Outputs a `Summary` protocol buffer with scalar values.
スケールと翻訳
ScaleAndTranslate.Options Optional attributes for ScaleAndTranslate
ScaleAndTranslateGrad <T extends TNumber >
ScaleAndTranslateGrad.Options Optional attributes for ScaleAndTranslateGrad
ScatterAdd <T extends TType >変数参照にスパース更新を追加します。
ScatterAdd.Options Optional attributes for ScatterAdd
ScatterDiv <T extends TType >変数参照をスパース更新によって分割します。
ScatterDiv.Options Optional attributes for ScatterDiv
ScatterMax <T extends TNumber > 「max」操作を使用して、スパース更新を変数参照に減らします。
ScatterMax.Options Optional attributes for ScatterMax
ScatterMin <T extends TNumber > `min` 操作を使用して、スパース更新を変数参照に減らします。
ScatterMin.Options Optional attributes for ScatterMin
ScatterMul <T extends TType >スパース更新を変数参照に乗算します。
ScatterMul.Options Optional attributes for ScatterMul
ScatterNd <U extends TType > Scatter `updates` into a new tensor according to `indices`.
ScatterNdAdd <T extends TType >変数内の個々の値またはスライスにスパース加算を適用します。
ScatterNdAdd.Options Optional attributes for ScatterNdAdd
ScatterNdMax <T extends TType >要素ごとの最大値を計算します。
ScatterNdMax.Options Optional attributes for ScatterNdMax
ScatterNdMin <T extends TType >要素ごとの最小値を計算します。
ScatterNdMin.Options Optional attributes for ScatterNdMin
ScatterNdNonAliasingAdd <T extends TType >個々の値またはスライスを使用して「input」にスパース加算を適用します

インデックス「インデックス」に従って「更新」から。

ScatterNdSub <T extends TType >スパース減算を変数内の個々の値またはスライスに適用します。
ScatterNdSub.Options Optional attributes for ScatterNdSub
ScatterNdUpdate <T extends TType >与えられた範囲内の個々の値またはスライスにスパースの「更新」を適用します。

「インデックス」に従って変数。

ScatterNdUpdate.Options Optional attributes for ScatterNdUpdate
ScatterSub <T extends TType >スパース更新を変数参照から減算します。
ScatterSub.Options Optional attributes for ScatterSub
ScatterUpdate <T extends TType >スパース更新を変数参照に適用します。
ScatterUpdate.オプションScatterUpdateのオプションの属性
範囲Manages groups of related properties when creating Tensorflow Operations, such as a common name prefix.
ScopedAllocatorOptions Protobuf type tensorflow.ScopedAllocatorOptions
ScopedAllocatorOptions.Builder Protobuf type tensorflow.ScopedAllocatorOptions
ScopedAllocatorOptionsOrBuilder
SdcaFprint Computes fingerprints of the input strings.
SdcaOptimizer Distributed version of Stochastic Dual Coordinate Ascent (SDCA) optimizer for

linear models with L1 + L2 regularization.

SdcaOptimizer.Options Optional attributes for SdcaOptimizer
SdcaShrinkL1 Applies L1 regularization shrink step on the parameters.
SegmentMax <T extends TNumber >テンソルのセグメントに沿った最大値を計算します。
SegmentMean <T extends TType >テンソルのセグメントに沿った平均を計算します。
SegmentMin <T extends TNumber >テンソルのセグメントに沿った最小値を計算します。
SegmentProd <T extends TType >テンソルのセグメントに沿って積を計算します。
SegmentSum <T extends TType >テンソルのセグメントに沿って合計を計算します。
Select <T extends TType >
SelfAdjointEig <T extends TType > Computes the eigen decomposition of one or more square self-adjoint matrices.
SelfAdjointEig <T extends TType > Computes the eigen decomposition of a batch of self-adjoint matrices

(Note: Only real inputs are supported).

SelfAdjointEig.Options Optional attributes for SelfAdjointEig
Selu <T extends TNumber > Computes scaled exponential linear: `scale * alpha * (exp(features) - 1)`

if < 0, `scale * features` otherwise.

SELU <T extends TFloating > Scaled Exponential Linear Unit (SELU).
SeluGrad <T extends TNumber > Computes gradients for the scaled exponential linear (Selu) operation.
送信Sends the named tensor from send_device to recv_device.
送信Sends the named tensor to another XLA computation.
Send.Options Optional attributes for Send
SendTPUEmbeddingGradients Performs gradient updates of embedding tables.
SequenceExample Protobuf type tensorflow.SequenceExample
SequenceExample.Builder Protobuf type tensorflow.SequenceExample
SequenceExampleOrBuilder
SerializeIterator Converts the given `resource_handle` representing an iterator to a variant tensor.
SerializeIterator.Options Optional attributes for SerializeIterator
SerializeManySparse <U extends TType > Serialize an `N`-minibatch `SparseTensor` into an `[N, 3]` `Tensor` object.
SerializeSparse <U extends TType > Serialize a `SparseTensor` into a `[3]` `Tensor` object.
SerializeTensor Transforms a Tensor into a serialized TensorProto proto.
サーバ分散トレーニングで使用するためのインプロセス TensorFlow サーバー。
ServerDef
 Defines the configuration of a single TensorFlow server. 
ServerDef.Builder
 Defines the configuration of a single TensorFlow server. 
ServerDefOrBuilder
ServerProtos
ServiceConfig
ServiceConfig.DispatcherConfig
 Configuration for a tf.data service DispatchServer. 
ServiceConfig.DispatcherConfig.Builder
 Configuration for a tf.data service DispatchServer. 
ServiceConfig.DispatcherConfigOrBuilder
ServiceConfig.WorkerConfig
 Configuration for a tf.data service WorkerServer. 
ServiceConfig.WorkerConfig.Builder
 Configuration for a tf.data service WorkerServer. 
ServiceConfig.WorkerConfigOrBuilder
セッションDriver for Graph execution.
Session.Run Output tensors and metadata obtained when executing a session.
Session.Runner Run Operation s and evaluate Tensors .
SessionLog
 Protocol buffer used for logging session state. 
SessionLog.Builder
 Protocol buffer used for logging session state. 
SessionLog.SessionStatus Protobuf enum tensorflow.SessionLog.SessionStatus
SessionLogOrBuilder
セッションメタデータ
 Metadata about the session. 
セッションメタデータ.ビルダー
 Metadata about the session. 
SessionMetadataOrBuilder
SetDiff1d <T extends TType , U extends TNumber > Computes the difference between two lists of numbers or strings.
サイズの設定入力「set」の最後の次元に沿った一意の要素の数。
SetSize.Options Optional attributes for SetSize
SetsOps Implementation of set operations
SetsOps.Operation Enumeration containing the string operation values to be passed to the TensorFlow Sparse Ops function ERROR(/SparseOps#denseToDenseSetOperation)
SetStatsAggregatorDataset
SetStatsAggregatorDataset
The shape of a Tensor or NdArray .
Shape <U extends TNumber >テンソルの形状を返します。
Shape_inference_func_TF_ShapeInferenceContext_TF_Status
Shaped Any data container with a given Shape .
ShapeN <U extends TNumber > Returns shape of tensors.
形状An operator providing methods on org.tensorflow.op.core.Shape tensors and 1d operands that represent the dimensions of a shape.
ShapeUtils Various methods for processing with Shapes and Operands
シャードデータセットこのデータセットの 1/`num_shards` だけを含む `Dataset` を作成します。
ShardDataset.Options Optional attributes for ShardDataset
ShardedFilename Generate a sharded filename.
ShardedFilespec Generate a glob pattern matching all sharded file names.
Sharding <T extends TType > An op which shards the input based on the given sharding attribute.
ShortDataBuffer short のDataBuffer
ShortDataLayout <S extends DataBuffer <?>> A DataLayout that converts data stored in a buffer to shorts.
ShortDenseNdArray
ShortNdArray An NdArray of shorts.
ShuffleAndRepeatDataset
ShuffleAndRepeatDataset.Options Optional attributes for ShuffleAndRepeatDataset
ShuffleDataset
ShuffleDataset.Options Optional attributes for ShuffleDataset
ShutdownDistributedTPU Shuts down a running distributed TPU system.
Sigmoid <T extends TFloating > Sigmoid activation.
Sigmoid <T extends TType > Computes sigmoid of `x` element-wise.
SigmoidCrossEntropyWithLogits
SigmoidGrad <T extends TType > Computes the gradient of the sigmoid of `x` wrt its input.
Sign <T extends TType > Returns an element-wise indication of the sign of a number.
サインDescribe the inputs and outputs of an executable entity, such as a ConcreteFunction , among other useful metadata.
Signature.Builder Builds a new function signature.
Signature.TensorDescription
署名定義
 SignatureDef defines the signature of a computation supported by a TensorFlow
 graph. 
SignatureDef.Builder
 SignatureDef defines the signature of a computation supported by a TensorFlow
 graph. 
SignatureDefOrBuilder
Sin <T extends TType > Computes sine of x element-wise.
SingleElementSequence <T, U extends NdArray <T>> A sequence of one single element
Sinh <T extends TType > Computes hyperbolic sine of x element-wise.
Size <U extends TNumber >テンソルのサイズを返します。
SkipDataset
SkipDataset Creates a dataset that skips `count` elements from the `input_dataset`.
Skipgram Parses a text file and creates a batch of examples.
Skipgram.Options Optional attributes for Skipgram
睡眠データセット
睡眠データセット
Slice <T extends TType > 「input」からスライスを返します。
SlicingElementSequence <T, U extends NdArray <T>> A sequence creating a new NdArray instance (slice) for each element of an iteration
スライディングウィンドウデータセット`input_dataset` にスライディング ウィンドウを渡すデータセットを作成します。
スライディングウィンドウデータセット`input_dataset` にスライディング ウィンドウを渡すデータセットを作成します。
Snapshot <T extends TType >入力テンソルのコピーを返します。
SnapShot Protobuf type tensorflow.SnapShot
SnapShot.Builder Protobuf type tensorflow.SnapShot
SnapshotMetadataRecord
 This stores the metadata information present in each snapshot record. 
SnapshotMetadataRecord.Builder
 This stores the metadata information present in each snapshot record. 
SnapshotMetadataRecordOrBuilder
SnapShotOrBuilder
SnapshotProtos
SnapshotRecord
 Each SnapshotRecord represents one batch of pre-processed input data. 
SnapshotRecord.Builder
 Each SnapshotRecord represents one batch of pre-processed input data. 
SnapshotRecordOrBuilder
SnapshotTensorMetadata
 Metadata for all the tensors in a Snapshot Record. 
SnapshotTensorMetadata.Builder
 Metadata for all the tensors in a Snapshot Record. 
SnapshotTensorMetadataOrBuilder
SobolSample <T extends TNumber > Sobol シーケンスから点を生成します。
Softmax <T extends TFloating > Softmax converts a real vector to a vector of categorical probabilities.
Softmax <T extends TNumber > Computes softmax activations.
SoftmaxCrossEntropyWithLogits
SoftmaxCrossEntropyWithLogits <T extends TNumber > Computes softmax cross entropy cost and gradients to backpropagate.
Softplus <T extends TFloating > Softplus activation function, softplus(x) = log(exp(x) + 1) .
Softplus <T extends TNumber > Computes softplus: `log(exp(features) + 1)`.
SoftplusGrad <T extends TNumber > Computes softplus gradients for a softplus operation.
Softsign <T extends TFloating > Softsign activation function, softsign(x) = x / (abs(x) + 1) .
Softsign <T extends TNumber > Computes softsign: `features / (abs(features) + 1)`.
SoftsignGrad <T extends TNumber > Computes softsign gradients for a softsign operation.
Solve <T extends TType > Solves systems of linear equations.
Solve.Options Optional attributes for Solve
Sort <T extends TType > Wraps the XLA Sort operator, documented at

https://www.tensorflow.org/performance/xla/operation_semantics#sort .

SourceFile
 Content of a source file involved in the execution of the debugged TensorFlow
 program. 
SourceFile.Builder
 Content of a source file involved in the execution of the debugged TensorFlow
 program. 
SourceFileOrBuilder
SpaceToBatch <T extends TType > SpaceToBatch for 4-D tensors of type T.
SpaceToBatchNd <T extends TType > T 型の ND テンソルの SpaceToBatch。
SpaceToDepth <T extends TType > SpaceToDepth for tensors of type T.
SpaceToDepth.Options Optional attributes for SpaceToDepth
SparseAccumulatorApplyGradient Applies a sparse gradient to a given accumulator.
SparseAccumulatorTakeGradient <T extends TType > Extracts the average sparse gradient in a SparseConditionalAccumulator.
SparseAdd <T extends TType > Adds two `SparseTensor` objects to produce another `SparseTensor`.
SparseAddGrad <T extends TType > The gradient operator for the SparseAdd op.
SparseApplyAdadelta <T extends TType > var: Variable() から取得する必要があります。
SparseApplyAdadelta.Options Optional attributes for SparseApplyAdadelta
SparseApplyAdagrad <T extends TType > adagrad スキームに従って、「*var」および「*accum」内の関連エントリを更新します。
SparseApplyAdagrad.Options Optional attributes for SparseApplyAdagrad
SparseApplyAdagradDa <T extends TType > Update entries in '*var' and '*accum' according to the proximal adagrad scheme.
SparseApplyAdagradDa.Options Optional attributes for SparseApplyAdagradDa
SparseApplyCenteredRmsProp <T extends TType > Update '*var' according to the centered RMSProp algorithm.
SparseApplyCenteredRmsProp.Options Optional attributes for SparseApplyCenteredRmsProp
SparseApplyFtrl <T extends TType > Update relevant entries in '*var' according to the Ftrl-proximal scheme.
SparseApplyFtrl.Options Optional attributes for SparseApplyFtrl
SparseApplyMomentum <T extends TType > Update relevant entries in '*var' and '*accum' according to the momentum scheme.
SparseApplyMomentum.Options Optional attributes for SparseApplyMomentum
SparseApplyProximalAdagrad <T extends TType > Sparse update entries in '*var' and '*accum' according to FOBOS algorithm.
SparseApplyProximalAdagrad.Options Optional attributes for SparseApplyProximalAdagrad
SparseApplyProximalGradientDescent <T extends TType > Sparse update '*var' as FOBOS algorithm with fixed learning rate.
SparseApplyProximalGradientDescent.Options Optional attributes for SparseApplyProximalGradientDescent
SparseApplyRmsProp <T extends TType > Update '*var' according to the RMSProp algorithm.
SparseApplyRmsProp.Options Optional attributes for SparseApplyRmsProp
SparseBincount <U extends TNumber >整数配列内の各値の出現数をカウントします。
SparseBincount.Options Optional attributes for SparseBincount
SparseCategoricalCrossentropy Computes the crossentropy loss between labels and predictions.
SparseCategoricalCrossentropy <T extends TNumber > A metric that computes the sparse categorical cross-entropy loss between true labels and predicted labels.
SparseConcat <T extends TType > Concatenates a list of `SparseTensor` along the specified dimension.
SparseConditionalAccumulator A conditional accumulator for aggregating sparse gradients.
SparseConditionalAccumulator.Options Optional attributes for SparseConditionalAccumulator
SparseCountSparseOutput <U extends TNumber > Performs sparse-output bin counting for a sparse tensor input.
SparseCountSparseOutput.Options Optional attributes for SparseCountSparseOutput
SparseCross Generates sparse cross from a list of sparse and dense tensors.
SparseCrossHashed Generates sparse cross from a list of sparse and dense tensors.
SparseDenseCwiseAdd <T extends TType > Adds up a SparseTensor and a dense Tensor, using these special rules:

(1) Broadcasts the dense side to have the same shape as the sparse side, if eligible; (2) Then, only the dense values pointed to by the indices of the SparseTensor participate in the cwise addition.

SparseDenseCwiseDiv <T extends TType > Component-wise divides a SparseTensor by a dense Tensor.
SparseDenseCwiseMul <T extends TType > Component-wise multiplies a SparseTensor by a dense Tensor.
SparseFillEmptyRows <T extends TType > Fills empty rows in the input 2-D `SparseTensor` with a default value.
SparseFillEmptyRowsGrad <T extends TType > The gradient of SparseFillEmptyRows.
SparseMatMul Multiply matrix "a" by matrix "b".
SparseMatMul.Options Optional attributes for SparseMatMul
スパース行列追加2 つの CSR 行列、C = アルファ * A + ベータ * B のスパース加算。
SparseMatrixMatMul <T extends TType >疎行列と密行列を行列乗算します。
SparseMatrixMatMul.Options Optional attributes for SparseMatrixMatMul
スパースマトリックスMul疎行列と密テンソルの要素ごとの乗算。
スパースマトリックスNNZ `sparse_matrix` の非ゼロの数を返します。
SparseMatrixOrderingAMD 「input」の近似最小次数 (AMD) 順序を計算します。
スパースマトリックスソフトマックスCSRSparseMatrix のソフトマックスを計算します。
SparseMatrixSoftmaxGrad SparseMatrixSoftmax 演算の勾配を計算します。
スパース行列スパースコレスキー「input」のスパースコレスキー分解を計算します。
スパース行列スパースマットマルMulスパース行列は、2 つの CSR 行列「a」と「b」を乗算します。
SparseMatrixSparseMatMul.Options Optional attributes for SparseMatrixSparseMatMul
スパース行列転置CSRSparseMatrix の内部 (行列) 次元を転置します。
SparseMatrixTranspose.Options Optional attributes for SparseMatrixTranspose
スパース行列ゼロ形状 `dense_shape` を持つすべてゼロの CSRSparseMatrix を作成します。
SparseReduceMax <T extends TNumber > Computes the max of elements across dimensions of a SparseTensor.
SparseReduceMax.Options Optional attributes for SparseReduceMax
SparseReduceMaxSparse <T extends TNumber > Computes the max of elements across dimensions of a SparseTensor.
SparseReduceMaxSparse.Options Optional attributes for SparseReduceMaxSparse
SparseReduceSum <T extends TType > Computes the sum of elements across dimensions of a SparseTensor.
SparseReduceSum.Options Optional attributes for SparseReduceSum
SparseReduceSumSparse <T extends TType > Computes the sum of elements across dimensions of a SparseTensor.
SparseReduceSumSparse.Options Optional attributes for SparseReduceSumSparse
SparseReorder <T extends TType > Reorders a SparseTensor into the canonical, row-major ordering.
SparseReshape Reshapes a SparseTensor to represent values in a new dense shape.
SparseSegmentMean <T extends TNumber > Computes the mean along sparse segments of a tensor.
SparseSegmentMeanGrad <T extends TNumber > Computes gradients for SparseSegmentMean.
SparseSegmentMeanWithNumSegments <T extends TNumber > Computes the mean along sparse segments of a tensor.
SparseSegmentSqrtN <T extends TNumber >テンソルの疎なセグメントに沿った合計を N の 2 乗で割って計算します。
SparseSegmentSqrtNGrad <T extends TNumber > Computes gradients for SparseSegmentSqrtN.
SparseSegmentSqrtNWithNumSegments <T extends TNumber >テンソルの疎なセグメントに沿った合計を N の 2 乗で割って計算します。
SparseSegmentSum <T extends TNumber > Computes the sum along sparse segments of a tensor.
SparseSegmentSumWithNumSegments <T extends TNumber > Computes the sum along sparse segments of a tensor.
SparseSlice <T extends TType > Slice a `SparseTensor` based on the `start` and `size`.
SparseSliceGrad <T extends TType > SparseSlice 演算の勾配演算子。
SparseSoftmax <T extends TNumber > Applies softmax to a batched ND `SparseTensor`.
SparseSoftmaxCrossEntropyWithLogits
SparseSoftmaxCrossEntropyWithLogits <T extends TNumber > Computes softmax cross entropy cost and gradients to backpropagate.
SparseSparseMaximum <T extends TNumber > Returns the element-wise max of two SparseTensors.
SparseSparseMinimum <T extends TType > Returns the element-wise min of two SparseTensors.
SparseSplit <T extends TType > Split a `SparseTensor` into `num_split` tensors along one dimension.
SparseTensorDenseAdd <U extends TType > Adds up a `SparseTensor` and a dense `Tensor`, producing a dense `Tensor`.
SparseTensorDenseMatMul <U extends TType > Multiply SparseTensor (of rank 2) "A" by dense matrix "B".
SparseTensorDenseMatMul.Options Optional attributes for SparseTensorDenseMatMul
SparseTensorSliceDataset Creates a dataset that splits a SparseTensor into elements row-wise.
SparseTensorToCSRSparseMatrix SparseTensor を (バッチ処理された) CSRSparseMatrix に変換します。
SparseToDense <U extends TType > Converts a sparse representation into a dense tensor.
SparseToDense.Options Optional attributes for SparseToDense
SparseToSparseSetOperation <T extends TType > Applies set operation along last dimension of 2 `SparseTensor` inputs.
SparseToSparseSetOperation.Options Optional attributes for SparseToSparseSetOperation
SpecializedType
 For identifying the underlying type of a variant. 
Spence <T extends TNumber >
Split <T extends TType > Splits a tensor into `num_split` tensors along one dimension.
SplitV <T extends TType > Splits a tensor into `num_split` tensors along one dimension.
SqlDataset SQL クエリを実行し、結果セットの行を出力するデータセットを作成します。
SqlDataset SQL クエリを実行し、結果セットの行を出力するデータセットを作成します。
Sqrt <T extends TType > Computes square root of x element-wise.
SqrtGrad <T extends TType > Computes the gradient for the sqrt of `x` wrt its input.
Sqrtm <T extends TType > Computes the matrix square root of one or more square matrices:

matmul(sqrtm(A), sqrtm(A)) = A

The input matrix should be invertible.

Square <T extends TType > Computes square of x element-wise.
SquaredDifference <T extends TType > Returns conj(x - y)(x - y) element-wise.
SquaredHinge Computes the squared hinge loss between labels and predictions.
SquaredHinge <T extends TNumber > A metric that computes the squared hinge loss metric between labels and predictions.
Squeeze <T extends TType >テンソルのシェイプからサイズ 1 の次元を削除します。
スクイーズオプションSqueezeのオプションの属性
Stack <T extends TType > `N` ランク - `R` テンソルのリストを 1 つのランク - `(R+1)` テンソルにパックします。
スタックオプションStackのオプションの属性
StackFrameWithId
 A stack frame with ID. 
StackFrameWithId.Builder
 A stack frame with ID. 
StackFrameWithIdOrBuilder
ステージStage values similar to a lightweight Enqueue.
Stage.Options Optional attributes for Stage
StageClear Op removes all elements in the underlying container.
StageClear.Options Optional attributes for StageClear
StagePeek Op peeks at the values at the specified index.
StagePeek.Options Optional attributes for StagePeek
ステージサイズOp は、基になるコンテナ内の要素の数を返します。
StageSize.Options Optional attributes for StageSize
StatefulRandomBinomial <V extends TNumber >
StatefulStandardNormal <U extends TType >正規分布からランダムな値を出力します。
StatefulTruncatedNormal <U extends TType >切り捨てられた正規分布からランダムな値を出力します。
StatefulUniform <U extends TType >一様分布からランダムな値を出力します。
StatefulUniformFullInt <U extends TType >一様分布からランダムな整数を出力します。
StatefulUniformInt <U extends TType >一様分布からランダムな整数を出力します。
StatelessMultinomial <V extends TNumber > Draws samples from a multinomial distribution.
StatelessParameterizedTruncatedNormal <V extends TNumber >
StatelessRandomBinomial <W extends TNumber >二項分布から決定論的な擬似乱数を出力します。
StatelessRandomGamma <V extends TNumber >ガンマ分布から決定論的な擬似乱数を出力します。
StatelessRandomGetKeyCounterAlg Picks the best algorithm based on device, and scrambles seed into key and counter.
StatelessRandomNormal <V extends TNumber >正規分布から決定論的な擬似乱数値を出力します。
StatelessRandomNormalV2 <U extends TNumber >正規分布から決定論的な擬似乱数値を出力します。
StatelessRandomPoisson <W extends TNumber >ポアソン分布から決定論的な擬似乱数を出力します。
StatelessRandomUniform <V extends TNumber >一様分布から決定論的な擬似乱数のランダム値を出力します。
StatelessRandomUniformFullInt <V extends TNumber >一様分布から決定論的な擬似乱数ランダム整数を出力します。
StatelessRandomUniformFullIntV2 <U extends TNumber >一様分布から決定論的な擬似乱数ランダム整数を出力します。
StatelessRandomUniformInt <V extends TNumber >一様分布から決定論的な擬似乱数ランダム整数を出力します。
StatelessRandomUniformIntV2 <U extends TNumber >一様分布から決定論的な擬似乱数ランダム整数を出力します。
StatelessRandomUniformV2 <U extends TNumber >一様分布から決定論的な擬似乱数のランダム値を出力します。
StatelessSampleDistortedBoundingBox <T extends TNumber > Generate a randomly distorted bounding box for an image deterministically.
StatelessSampleDistortedBoundingBox.Options Optional attributes for StatelessSampleDistortedBoundingBox
StatelessTruncatedNormal <V extends TNumber >切り捨てられた正規分布から決定論的な擬似乱数値を出力します。
StatelessTruncatedNormalV2 <U extends TNumber >切り捨てられた正規分布から決定論的な擬似乱数値を出力します。
StaticRegexFullMatch Check if the input matches the regex pattern.
StaticRegexReplace Replaces the match of pattern in input with rewrite.
StaticRegexReplace.Options Optional attributes for StaticRegexReplace
StatsAggregatorHandle統計マネージャーリソースを作成します。
StatsAggregatorHandle
StatsAggregatorHandle.Options Optional attributes for StatsAggregatorHandle
StatsAggregatorHandle.Options Optional attributes for StatsAggregatorHandle
StatsAggregatorSetSummaryWriter Set a summary_writer_interface to record statistics using given stats_aggregator.
StatsAggregatorSummary指定された統計マネージャーによって記録された統計の概要を作成します。
StatsAggregatorSummary指定された統計マネージャーによって記録された統計の概要を作成します。
StdArrays Utility class for working with NdArray instances mixed with standard Java arrays.
StepStats Protobuf type tensorflow.StepStats
StepStats.Builder Protobuf type tensorflow.StepStats
StepStatsOrBuilder
StepStatsProtos
StopGradient <T extends TType >勾配の計算を停止します。
StridedSlice <T extends TType > `input` からストライドされたスライスを返します。
StridedSlice.Options Optional attributes for StridedSlice
StridedSliceAssign <T extends TType > `value` を `ref` のスライスされた左辺値参照に代入します。
StridedSliceAssign.Options Optional attributes for StridedSliceAssign
StridedSliceGrad <U extends TType > `StridedSlice` の勾配を返します。
StridedSliceGrad.Options Optional attributes for StridedSliceGrad
StridedSliceHelper Helper endpoint methods for Python like indexing.
StringFormat Formats a string template using a list of tensors.
StringFormat.Options Optional attributes for StringFormat
StringLayout Data layout that converts a String to/from a sequence of bytes applying a given charset.
StringLength String lengths of `input`.
StringLength.Options Optional attributes for StringLength
StringNGrams <T extends TNumber > Creates ngrams from ragged string data.
StringSplit Split elements of `source` based on `sep` into a `SparseTensor`.
StringSplit.Options Optional attributes for StringSplit
ストリップStrip leading and trailing whitespaces from the Tensor.
StructProtos
StructuredValue
 `StructuredValue` represents a dynamically typed value representing various
 data structures that are inspired by Python data structures typically used in
 TensorFlow functions as inputs and outputs. 
StructuredValue.Builder
 `StructuredValue` represents a dynamically typed value representing various
 data structures that are inspired by Python data structures typically used in
 TensorFlow functions as inputs and outputs. 
StructuredValue.KindCase
StructuredValueOrBuilder
Sub <T extends TType > Returns x - y element-wise.
Substr Return substrings from `Tensor` of strings.
Substr.Options Optional attributes for Substr
Sum <T extends TType >テンソルの次元にわたる要素の合計を計算します。
Sum.Options Optional attributes for Sum
まとめ
 A Summary is a set of named values to be displayed by the
 visualizer. 
Summary.Audio Protobuf type tensorflow.Summary.Audio
Summary.Audio.Builder Protobuf type tensorflow.Summary.Audio
Summary.AudioOrBuilder
Summary.Builder
 A Summary is a set of named values to be displayed by the
 visualizer. 
Summary.Image Protobuf type tensorflow.Summary.Image
Summary.Image.Builder Protobuf type tensorflow.Summary.Image
Summary.ImageOrBuilder
Summary.Value Protobuf type tensorflow.Summary.Value
Summary.Value.Builder Protobuf type tensorflow.Summary.Value
Summary.Value.ValueCase
Summary.ValueOrBuilder
SummaryDescription
 Metadata associated with a series of Summary data
 
Protobuf type tensorflow.SummaryDescription
SummaryDescription.Builder
 Metadata associated with a series of Summary data
 
Protobuf type tensorflow.SummaryDescription
SummaryDescriptionOrBuilder
SummaryMetadata
 A SummaryMetadata encapsulates information on which plugins are able to make
 use of a certain summary value. 
SummaryMetadata.Builder
 A SummaryMetadata encapsulates information on which plugins are able to make
 use of a certain summary value. 
SummaryMetadata.PluginData Protobuf type tensorflow.SummaryMetadata.PluginData
SummaryMetadata.PluginData.Builder Protobuf type tensorflow.SummaryMetadata.PluginData
SummaryMetadata.PluginDataOrBuilder
SummaryMetadataOrBuilder
SummaryOrBuilder
SummaryProtos
SummaryWriter
SummaryWriter.Options Optional attributes for SummaryWriter
Svd <T extends TType > Computes the singular value decompositions of one or more matrices.
Svd <T extends TType > Computes the eigen decomposition of a batch of self-adjoint matrices

(Note: Only real inputs are supported).

Svd.Options Optional attributes for Svd
Swish <T extends TFloating > Swish activation function.
SwitchCond <T extends TType > Forwards `data` to the output port determined by `pred`.

T

TaggedRunMetadata
 For logging the metadata output for a single session.run() call. 
TaggedRunMetadata.Builder
 For logging the metadata output for a single session.run() call. 
TaggedRunMetadataOrBuilder
TakeDataset
TakeDataset Creates a dataset that contains `count` elements from the `input_dataset`.
TakeManySparseFromTensorsMap <T extends TType > Read `SparseTensors` from a `SparseTensorsMap` and concatenate them.
TakeManySparseFromTensorsMap.Options Optional attributes for TakeManySparseFromTensorsMap
Tan <T extends TType > Computes tan of x element-wise.
Tanh <T extends TFloating > Hyperbolic tangent activation function.
Tanh <T extends TType > Computes hyperbolic tangent of `x` element-wise.
TanhGrad <T extends TType > Computes the gradient for the tanh of `x` wrt its input.
TaskDeviceFilters
 Defines the device filters for a remote task. 
TaskDeviceFilters.Builder
 Defines the device filters for a remote task. 
TaskDeviceFiltersOrBuilder
TBfloat16 Brain 16-bit float tensor type.
TBfloat16Mapper Maps memory of DT_BFLOAT16 tensors to a n-dimensional data space.
TBool Boolean tensor type.
TBoolMapper Maps memory of DT_BOOL tensors to a n-dimensional data space.
TemporaryVariable <T extends TType >突然変異する可能性があるが、単一ステップ内でのみ持続するテンソルを返します。
TemporaryVariable.Options Optional attributes for TemporaryVariable
テンソルA statically typed multi-dimensional array.
テンソル
TensorArray An array of Tensors of given size.
TensorArray.Options Optional attributes for TensorArray
TensorArrayClose Delete the TensorArray from its resource container.
TensorArrayConcat <T extends TType > Concat the elements from the TensorArray into value `value`.
TensorArrayConcat.Options Optional attributes for TensorArrayConcat
TensorArrayGather <T extends TType > TensorArray から特定の要素を出力 `value` に収集します。
TensorArrayGather.Options Optional attributes for TensorArrayGather
TensorArrayGrad Creates a TensorArray for storing the gradients of values in the given handle.
TensorArrayGradWithShape Creates a TensorArray for storing multiple gradients of values in the given handle.
TensorArrayPack <T extends TType >
TensorArrayPack.Options Optional attributes for TensorArrayPack
TensorArrayRead <T extends TType > TensorArray から要素を出力 `value` に読み取ります。
TensorArrayScatter入力値のデータを特定の TensorArray 要素に分散します。
TensorArraySize TensorArray の現在のサイズを取得します。
TensorArraySplit入力値のデータを TensorArray 要素に分割します。
TensorArrayUnpack
TensorArrayWrite要素を tensor_array にプッシュします。
TensorBuffers Maps native tensor memory into DataBuffers , allowing I/O operations from the JVM.
TensorBundleProtos
TensorConnection
 Defines a connection between two tensors in a `GraphDef`. 
TensorConnection.Builder
 Defines a connection between two tensors in a `GraphDef`. 
TensorConnectionOrBuilder
TensorDataset Creates a dataset that emits `components` as a tuple of tensors once.
TensorDebugMode
 Available modes for extracting debugging information from a Tensor. 
TensorDescription Protobuf type tensorflow.TensorDescription
TensorDescription.Builder Protobuf type tensorflow.TensorDescription
TensorDescriptionOrBuilder
TensorDescriptionProtos
TensorDiag <T extends TType > Returns a diagonal tensor with a given diagonal values.
TensorDiagPart <T extends TType > Returns the diagonal part of the tensor.
TensorFlow Static utility methods describing the TensorFlow runtime.
テンソルフロー
テンソルフロー
TensorFlowException Unchecked exception thrown by TensorFlow core classes
TensorForestCreateTreeVariable Creates a tree resource and returns a handle to it.
TensorForestTreeDeserialize Deserializes a proto into the tree handle
TensorForestTreeIsInitializedOp Checks whether a tree has been initialized.
TensorForestTreePredict Output the logits for the given input data
TensorForestTreeResourceHandleOp Creates a handle to a TensorForestTreeResource
TensorForestTreeResourceHandleOp.Options Optional attributes for TensorForestTreeResourceHandleOp
TensorForestTreeSerialize Serializes the tree handle to a proto
TensorForestTreeSize Get the number of nodes in a tree
TensorInfo
 Information about a Tensor necessary for feeding or retrieval. 
TensorInfo.Builder
 Information about a Tensor necessary for feeding or retrieval. 
TensorInfo.CompositeTensor
 Generic encoding for composite tensors. 
TensorInfo.CompositeTensor.Builder
 Generic encoding for composite tensors. 
TensorInfo.CompositeTensorOrBuilder
TensorInfo.CooSparse
 For sparse tensors, The COO encoding stores a triple of values, indices,
 and shape. 
TensorInfo.CooSparse.Builder
 For sparse tensors, The COO encoding stores a triple of values, indices,
 and shape. 
TensorInfo.CooSparseOrBuilder
TensorInfo.EncodingCase
TensorInfoOrBuilder
TensorListConcat <U extends TType > Concats all tensors in the list along the 0th dimension.
TensorListConcatLists
TensorListElementShape <T extends TNumber >指定されたリストの要素の形状 (テンソルとして)。
TensorListFromTensorスタックされたときに `tensor` の値を持つ TensorList を作成します。
TensorListGather <T extends TType > TensorList にインデックスを付けて Tensor を作成します。
TensorListGetItem <T extends TType >
TensorListLength入力テンソル リスト内のテンソルの数を返します。
TensorListPopBack <T extends TType > Returns the last element of the input list as well as a list with all but that element.
TensorListPushBack最後の要素として渡された `Tensor` と、指定されたリストの他の要素を `input_handle` に持つリストを返します。
TensorListPushBackBatch
TensorListReserve空の要素を含む指定されたサイズのリスト。
TensorListResizeリストのサイズを変更します。
TensorListScatter Tensor にインデックスを付けて TensorList を作成します。
TensorListScatterIntoExistingList入力リスト内のインデックスでテンソルを散布します。
TensorListSetItem
TensorListSplitテンソルをリストに分割します。
TensorListStack <T extends TType >すべてのテンソルをリストに積み重ねます。
TensorListStack.Options Optional attributes for TensorListStack
TensorMapErase指定されたキーの項目が消去されたテンソル マップを返します。
TensorMapHasKey指定されたキーがマップ内に存在するかどうかを返します。
TensorMapInsert指定されたキーと値のペアが挿入された「input_handle」であるマップを返します。
TensorMapLookup <U extends TType >テンソル マップ内の指定されたキーから値を返します。
TensorMapper <T extends TType > Maps the native memory of a RawTensor to a n-dimensional typed data space accessible from the JVM.
テンソルマップサイズ入力テンソル マップ内のテンソルの数を返します。
TensorMapStackKeys <T extends TType >テンソル マップ内のすべてのキーの Tensor スタックを返します。
TensorMetadata
 Metadata for a single tensor in the Snapshot Record. 
TensorMetadata.Builder
 Metadata for a single tensor in the Snapshot Record. 
TensorMetadataOrBuilder
TensorProto
 Protocol buffer representing a tensor. 
TensorProto.Builder
 Protocol buffer representing a tensor. 
TensorProtoOrBuilder
TensorProtos
TensorScatterNdAdd <T extends TType > 「インデックス」に従って、既存のテンソルにスパースの「更新」を追加します。
TensorScatterNdMax <T extends TType >
TensorScatterNdMin <T extends TType >
TensorScatterNdSub <T extends TType > 「インデックス」に従って既存のテンソルからスパースの「更新」を減算します。
TensorScatterNdUpdate <T extends TType > 「インデックス」に従って既存のテンソルに「更新」を分散します。
TensorShapeProto
 Dimensions of a tensor. 
TensorShapeProto.Builder
 Dimensions of a tensor. 
TensorShapeProto.Dim
 One dimension of the tensor. 
TensorShapeProto.Dim.Builder
 One dimension of the tensor. 
TensorShapeProto.DimOrBuilder
TensorShapeProtoOrBuilder
TensorShapeProtos
TensorSliceDataset
TensorSliceDataset Creates a dataset that emits each dim-0 slice of `components` once.
TensorSliceProto
 Can only be interpreted if you know the corresponding TensorShape. 
TensorSliceProto.Builder
 Can only be interpreted if you know the corresponding TensorShape. 
TensorSliceProto.Extent
 Extent of the slice in one dimension. 
TensorSliceProto.Extent.Builder
 Extent of the slice in one dimension. 
TensorSliceProto.Extent.HasLengthCase
TensorSliceProto.ExtentOrBuilder
TensorSliceProtoOrBuilder
TensorSliceProtos
TensorSpecProto
 A protobuf to represent tf.TensorSpec. 
TensorSpecProto.Builder
 A protobuf to represent tf.TensorSpec. 
TensorSpecProtoOrBuilder
TensorStridedSliceUpdate <T extends TType > `value` を `input` のスライスされた左辺値参照に代入します。
TensorStridedSliceUpdate.Options Optional attributes for TensorStridedSliceUpdate
TensorSummary Outputs a `Summary` protocol buffer with a tensor and per-plugin data.
TensorType Annotation for all tensor types.
TensorTypeInfo <T extends TType > Registered information about a tensor type.
TensorTypeRegistry Repository of all registered tensor types.
TestLogProtos
TestResults
 The output of one benchmark / test run. 
TestResults.BenchmarkType
 The type of benchmark. 
TestResults.Builder
 The output of one benchmark / test run. 
TestResultsOrBuilder
TextLineDataset
TextLineDataset Creates a dataset that emits the lines of one or more text files.
TextLineReader A Reader that outputs the lines of a file delimited by '\n'.
TextLineReader.Options Optional attributes for TextLineReader
TF_AllocatorAttributes
TF_ApiDefMap
TF_AttrMetadata
TF_Buffer
TF_Buffer.Data_deallocator_Pointer_long
TF_DeprecatedSession
TF_DeviceList
TF_DimensionHandle
TF_Function
TF_FunctionOptions
TF_Graph
TF_ImportGraphDefOptions
TF_ImportGraphDefResults
TF_Input
TF_KernelBuilder
TF_Library
TF_OpDefinitionBuilder
TF_Operation
TF_OperationDescription
TF_OpKernelConstruction
TF_OpKernelContext
TF_Output
TF_Server
TF_Session
TF_SessionOptions
TF_ShapeHandle
TF_ShapeInferenceContext
TF_Status
TF_StringView
TF_Tensor
TF_TString
TF_TString_Large
TF_TString_Offset
TF_TString_Raw
TF_TString_Small
TF_TString_Union
TF_TString_View
TF_WhileParams
TFE_Context
TFE_ContextOptions
TFE_Op
TFE_TensorDebugInfo
TFE_TensorHandle
TFFailedPreconditionException
TFInvalidArgumentException
TFloat16 IEEE-754 half-precision 16-bit float tensor type.
TFloat16Mapper Maps memory of DT_HALF tensors to a n-dimensional data space.
TFloat32 IEEE-754 single-precision 32-bit float tensor type.
TFloat32Mapper Maps memory of DT_FLOAT tensors to a n-dimensional data space.
TFloat64 IEEE-754 double-precision 64-bit float tensor type.
TFloat64Mapper Maps memory of DT_DOUBLE tensors to a n-dimensional data space.
TFloating Common interface for all floating point tensors.
TFOutOfRangeException
TFPermissionDeniedException
TfRecordDataset 1 つ以上の TFRecord ファイルからレコードを出力するデータセットを作成します。
TFRecordDataset
TfRecordReader A Reader that outputs the records from a TensorFlow Records file.
TfRecordReader.Options Optional attributes for TfRecordReader
TFResourceExhaustedException
TFUnauthenticatedException
TFUnimplementedException
スレッドプールデータセットカスタム スレッド プールを使用して「input_dataset」を計算するデータセットを作成します。
スレッドプールデータセットカスタム スレッド プールを使用して「input_dataset」を計算するデータセットを作成します。
スレッドプールハンドルカスタム スレッド プールを使用して「input_dataset」を計算するデータセットを作成します。
スレッドプールハンドルカスタム スレッド プールを使用して「input_dataset」を計算するデータセットを作成します。
ThreadPoolHandle.Options Optional attributes for ThreadPoolHandle
ThreadPoolHandle.Options Optional attributes for ThreadPoolHandle
ThreadPoolOptionProto Protobuf type tensorflow.ThreadPoolOptionProto
ThreadPoolOptionProto.Builder Protobuf type tensorflow.ThreadPoolOptionProto
ThreadPoolOptionProtoOrBuilder
Tile <T extends TType >指定されたテンソルをタイル化してテンソルを構築します。
TileGrad <T extends TType > Returns the gradient of `Tile`.
タイムスタンプエポックからの時間を秒単位で提供します。
TInt32 32 ビットの符号付き整数テンソル型。
TInt32Mapper Maps memory of DT_INT32 tensors to a n-dimensional data space.
TInt64 64-bit signed integer tensor type.
TInt64Mapper Maps memory of DT_INT64 tensors to a n-dimensional data space.
TIntegral Common interface for all integral numeric tensors.
TNumber Common interface for all numeric tensors.
トブールテンソルをスカラー述語に変換します。
ToHashBucket Converts each string in the input Tensor to its hash mod by a number of buckets.
ToHashBucketFast Converts each string in the input Tensor to its hash mod by a number of buckets.
ToHashBucketStrong Converts each string in the input Tensor to its hash mod by a number of buckets.
ToNumber <T extends TNumber > Converts each string in the input Tensor to the specified numeric type.
TopK <T extends TNumber > Finds values and indices of the `k` largest elements for the last dimension.
TopK.Options Optional attributes for TopK
TopKUnique Returns the TopK unique values in the array in sorted order.
TopKWithUnique Returns the TopK values in the array in sorted order.
TPUコンパイル結果TPU コンパイルの結果を返します。
TPU埋め込みアクティベーションTPU 埋め込みの差別化を可能にするオペレーション。
TPUReplicatedInput <T extends TType > N 個の入力を N ウェイ複製 TPU 計算に接続します。
TPUReplicatedInput.Options Optional attributes for TPUReplicatedInput
TPUReplicatedOutput <T extends TType > Connects N outputs from an N-way replicated TPU computation.
TPUReplicateMetadata Metadata indicating how the TPU computation should be replicated.
TPUReplicateMetadata.Options Optional attributes for TPUReplicateMetadata
TrackableObjectGraph Protobuf type tensorflow.TrackableObjectGraph
TrackableObjectGraph.Builder Protobuf type tensorflow.TrackableObjectGraph
TrackableObjectGraph.TrackableObject Protobuf type tensorflow.TrackableObjectGraph.TrackableObject
TrackableObjectGraph.TrackableObject.Builder Protobuf type tensorflow.TrackableObjectGraph.TrackableObject
TrackableObjectGraph.TrackableObject.ObjectReference Protobuf 型tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference
TrackableObjectGraph.TrackableObject.ObjectReference.Builder Protobuf 型tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference
TrackableObjectGraph.TrackableObject.ObjectReferenceOrBuilder
TrackableObjectGraph.TrackableObject.SerializedTensor Protobuf type tensorflow.TrackableObjectGraph.TrackableObject.SerializedTensor
TrackableObjectGraph.TrackableObject.SerializedTensor.Builder Protobuf type tensorflow.TrackableObjectGraph.TrackableObject.SerializedTensor
TrackableObjectGraph.TrackableObject.SerializedTensorOrBuilder
TrackableObjectGraph.TrackableObject.SlotVariableReference Protobuf type tensorflow.TrackableObjectGraph.TrackableObject.SlotVariableReference
TrackableObjectGraph.TrackableObject.SlotVariableReference.Builder Protobuf type tensorflow.TrackableObjectGraph.TrackableObject.SlotVariableReference
TrackableObjectGraph.TrackableObject.SlotVariableReferenceOrBuilder
TrackableObjectGraph.TrackableObjectOrBuilder
TrackableObjectGraphOrBuilder
TrackableObjectGraphProtos
TransportOptions
TransportOptions.RecvBufRespExtra
 Extra data needed on a non-RDMA RecvBufResponse. 
TransportOptions.RecvBufRespExtra.Builder
 Extra data needed on a non-RDMA RecvBufResponse. 
TransportOptions.RecvBufRespExtraOrBuilder
Transpose <T extends TType > Shuffle dimensions of x according to a permutation.
TriangularSolve <T extends TType > Solves systems of linear equations with upper or lower triangular matrices by backsubstitution.
TriangularSolve.Options Optional attributes for TriangularSolve
TridiagonalMatMul <T extends TType >三重対角行列との積を計算します。
TridiagonalSolve <T extends TType >三重対角方程式系を解きます。
TridiagonalSolve.Options Optional attributes for TridiagonalSolve
TruncateDiv <T extends TType > Returns x / y element-wise for integer types.
TruncatedNormal <T extends TFloating >切り捨てられた正規分布を生成するイニシャライザ。
TruncatedNormal <U extends TNumber >切り捨てられた正規分布からランダムな値を出力します。
TruncatedNormal.Options Optional attributes for TruncatedNormal
TruncateMod <T extends TNumber > Returns element-wise remainder of division.
TryRpc Perform batches of RPC requests.
TryRpc.Options Optional attributes for TryRpc
TString String type.
TStringInitializer <T> Helper class for initializing a TString tensor.
TStringMapper Maps memory of DT_STRING tensors to a n-dimensional data space.
TType Common interface for all typed tensors.
TUint8 8-bit unsigned integer tensor type.
TUint8Mapper Maps memory of DT_UINT8 tensors to a n-dimensional data space.
TupleValue
 Represents a Python tuple. 
TupleValue.Builder
 Represents a Python tuple. 
TupleValueOrBuilder
TypeSpecProto
 Represents a tf.TypeSpec
 
Protobuf type tensorflow.TypeSpecProto
TypeSpecProto.Builder
 Represents a tf.TypeSpec
 
Protobuf type tensorflow.TypeSpecProto
TypeSpecProto.TypeSpecClass Protobuf enum tensorflow.TypeSpecProto.TypeSpecClass
TypeSpecProtoOrBuilder
TypesProtos

U

Unbatch <T extends TType >単一の出力 Tensor の Batch の操作を逆にします。
Unbatch.Options Optional attributes for Unbatch
UnbatchDataset入力の要素を複数の要素に分割するデータセット。
UnbatchDataset入力の要素を複数の要素に分割するデータセット。
UnbatchGrad <T extends TType >アンバッチのグラデーション。
UnbatchGrad.Options Optional attributes for UnbatchGrad
UncompressElement Uncompresses a compressed dataset element.
UnicodeDecode <T extends TNumber > Decodes each string in `input` into a sequence of Unicode code points.
UnicodeDecode.Options Optional attributes for UnicodeDecode
UnicodeDecodeWithOffsets <T extends TNumber > Decodes each string in `input` into a sequence of Unicode code points.
UnicodeDecodeWithOffsets.Options Optional attributes for UnicodeDecodeWithOffsets
Unicodeエンコードint のテンソルを Unicode 文字列にエンコードします。
UnicodeEncode.Options Optional attributes for UnicodeEncode
UnicodeScript Determine the script codes of a given tensor of Unicode integer code points.
UnicodeTranscode Transcode the input text from a source encoding to a destination encoding.
UnicodeTranscode.Options Optional attributes for UnicodeTranscode
UniformCandidateSampler Generates labels for candidate sampling with a uniform distribution.
UniformCandidateSampler.Options Optional attributes for UniformCandidateSampler
Unique <T extends TType , V extends TNumber > Finds unique elements along an axis of a tensor.
Uniquedataset 「input_dataset」の一意の要素を含むデータセットを作成します。
Uniquedataset 「input_dataset」の一意の要素を含むデータセットを作成します。
UniqueWithCounts <T extends TType , V extends TNumber > Finds unique elements along an axis of a tensor.
UnitNorm Constrains the weights to have unit norm.
UnravelIndex <T extends TNumber >一連のフラットインデックスを座標配列のタプルに変換します。
unsortedsegmentjoin Joins the elements of `inputs` based on `segment_ids`.
UnsortedSegmentJoin.Options Optional attributes for UnsortedSegmentJoin
UnsortedSegmentMax <T extends TNumber >テンソルのセグメントに沿った最大値を計算します。
UnsortedSegmentMin <T extends TNumber >テンソルのセグメントに沿った最小値を計算します。
UnsortedSegmentProd <T extends TType >テンソルのセグメントに沿って積を計算します。
UnsortedSegmentSum <T extends TType >テンソルのセグメントに沿って合計を計算します。
Unstack <T extends TType > Unpacks a given dimension of a rank-`R` tensor into `num` rank-`(R-1)` tensors.
Unstack.Options Optional attributes for Unstack
Unstage Op is similar to a lightweight Dequeue.
Unstage.Options Optional attributes for Unstage
unwrapdatasetvariant
アッパーすべての小文字をそれぞれの大文字に変換します。
Upper.Options Optional attributes for Upper
UpperBound <U extends TNumber >各行に沿ってapper_bound(sorted_search_values、values)を適用します。

V

バリデーター
バリデーター
ValuesDef
 Protocol buffer representing the values in ControlFlowContext. 
ValuesDef.Builder
 Protocol buffer representing the values in ControlFlowContext. 
ValuesDefOrBuilder
varhandleop可変リソースのハンドルを作成します。
VarHandleOp.Options Optional attributes for VarHandleOp
Variable <T extends TType >ステップ全体で持続するテンソルの形で状態を保持します。
Variable.Options Optional attributes for Variable
VariableAggregation
 Indicates how a distributed variable will be aggregated. 
VariableDef
 Protocol buffer representing a Variable. 
VariableDef.Builder
 Protocol buffer representing a Variable. 
VariableDefOrBuilder
VariableProtos
VariableShape <T extends TNumber > 「リソース」によって指された変数の形状を返します。
VariableSynchronization
 Indicates when a distributed variable will be synced. 
VarianceScaling <T extends TFloating > Initializer capable of adapting its scale to the shape of weights tensors.
VarianceScaling.Distribution The random distribution to use when initializing the values.
VarianceScaling.Mode The mode to use for calculating the fan values.
VariantTensorDataProto
 Protocol buffer representing the serialization format of DT_VARIANT tensors. 
VariantTensorDataProto.Builder
 Protocol buffer representing the serialization format of DT_VARIANT tensors. 
VariantTensorDataProtoOrBuilder
VarisInitializedopリソースハンドルベースの変数が初期化されているかどうかを確認します。
VarLenFeatureProto Protobuf type tensorflow.VarLenFeatureProto
VarLenFeatureProto.Builder Protobuf type tensorflow.VarLenFeatureProto
VarLenFeatureProtoOrBuilder
VerifierConfig
 The config for graph verifiers. 
VerifierConfig.Builder
 The config for graph verifiers. 
VerifierConfig.Toggle Protobuf enum tensorflow.VerifierConfig.Toggle
VerifierConfigOrBuilder
VerifierConfigProtos
VersionDef
 Version information for a piece of serialized data
 There are different types of versions for each type of data
 (GraphDef, etc.), but they all have the same common shape
 described here. 
VersionDef.Builder
 Version information for a piece of serialized data
 There are different types of versions for each type of data
 (GraphDef, etc.), but they all have the same common shape
 described here. 
VersionDefOrBuilder
VersionsProtos

W

WatchdogConfig Protobuf type tensorflow.WatchdogConfig
WatchdogConfig.Builder Protobuf type tensorflow.WatchdogConfig
WatchdogConfigOrBuilder
WeakPointerScope A minimalist pointer scope only keeping weak references to its elements.
どこテンソルで非ゼロ /真の値の位置を返します。
WhileContextDef
 Protocol buffer representing a WhileContext object. 
WhileContextDef.Builder
 Protocol buffer representing a WhileContext object. 
WhileContextDefOrBuilder
WholeFileReader A Reader that outputs the entire contents of a file as a value.
WholeFileReader.Options Optional attributes for WholeFileReader
WindowDataset Combines (nests of) input elements into a dataset of (nests of) windows.
WorkerHealth
 Current health status of a worker. 
workerheartbeatワーカーハートビートop。
WorkerHeartbeatRequest Protobuf type tensorflow.WorkerHeartbeatRequest
WorkerHeartbeatRequest.Builder Protobuf type tensorflow.WorkerHeartbeatRequest
WorkerHeartbeatRequestOrBuilder
WorkerHeartbeatResponse Protobuf type tensorflow.WorkerHeartbeatResponse
WorkerHeartbeatResponse.Builder Protobuf type tensorflow.WorkerHeartbeatResponse
WorkerHeartbeatResponseOrBuilder
WorkerShutdownMode
 Indicates the behavior of the worker when an internal error or shutdown
 signal is received. 
wrapdatasetvariant
WriteAudioSummary Writes an audio summary.
WriteAudioSummary.Options Optional attributes for WriteAudioSummary
WriteFile Writes contents to the file at input filename.
WriteGraphSummary Writes a graph summary.
WriteHistogramSummary Writes a histogram summary.
WriteImageSummary Writes an image summary.
WriteImageSummary.Options Optional attributes for WriteImageSummary
WriteRawProtoSummary Writes a serialized proto summary.
WriteScalarSummary Writes a scalar summary.
WriteSummary Writes a tensor summary.

×

Xdivy <T extends TType > Returns 0 if x == 0, and x / y otherwise, elementwise.
XEvent
 An XEvent is a trace event, optionally annotated with XStats. 
XEvent.Builder
 An XEvent is a trace event, optionally annotated with XStats. 
XEvent.DataCase
XEventMetadata
 Metadata for an XEvent, corresponds to an event type and is shared by
 all XEvents with the same metadata_id. 
XEventMetadata.Builder
 Metadata for an XEvent, corresponds to an event type and is shared by
 all XEvents with the same metadata_id. 
XEventMetadataOrBuilder
XEventOrBuilder
XlaRecvFromHost <T extends TType >ホストからテンソルを受信するOP。
XlaSendToHost An op to send a tensor to the host.
XlaSetBound Set a bound for the given input value as a hint to Xla compiler,

returns the same value.

XlaSpmdFullToShardShape <T extends TType > An op used by XLA SPMD partitioner to switch from automatic partitioning to

manual partitioning.

XlaSpmdShardToFullShape <T extends TType > An op used by XLA SPMD partitioner to switch from manual partitioning to

automatic partitioning.

XLine
 An XLine is a timeline of trace events (XEvents). 
XLine.Builder
 An XLine is a timeline of trace events (XEvents). 
XLineOrBuilder
Xlog1py <T extends TType > x == 0の場合は0、x * log1p(y)それ以外の場合は、elementwiseを返します。
Xlogy <T extends TType > Returns 0 if x == 0, and x * log(y) otherwise, elementwise.
XPlane
 An XPlane is a container of parallel timelines (XLines), generated by a
 profiling source or by post-processing one or more XPlanes. 
XPlane.Builder
 An XPlane is a container of parallel timelines (XLines), generated by a
 profiling source or by post-processing one or more XPlanes. 
XPlaneOrBuilder
XPlaneProtos
XSpace
 A container of parallel XPlanes, generated by one or more profiling sources. 
XSpace.Builder
 A container of parallel XPlanes, generated by one or more profiling sources. 
XSpaceOrBuilder
XStat
 An XStat is a named value associated with an XEvent, e.g., a performance
 counter value, a metric computed by a formula applied over nested XEvents
 and XStats. 
XStat.Builder
 An XStat is a named value associated with an XEvent, e.g., a performance
 counter value, a metric computed by a formula applied over nested XEvents
 and XStats. 
XStat.ValueCase
XStatMetadata
 Metadata for an XStat, corresponds to a stat type and is shared by all
 XStats with the same metadata_id. 
XStatMetadata.Builder
 Metadata for an XStat, corresponds to a stat type and is shared by all
 XStats with the same metadata_id. 
XStatMetadataOrBuilder
XStatOrBuilder

Z

Zeros <T extends TType > Creates an Initializer that sets all values to zero.
Zeros <T extends TType > 「dims」によって与えられる形状のゼロで定数を作成するオペレーター。
ZerosLike <T extends TType > xと同じ形状とタイプのゼロのテンソルを返します。
Zeta <T extends TNumber > Compute the Hurwitz zeta function \\(\zeta(x, q)\\)。
ZipDataset Creates a dataset that zips together `input_datasets`.