- विवरण :
फ्रेंका खिलौना रसोई की खोज कर रही है
मुखपृष्ठ : https:// human-world-model.github.io/
स्रोत कोड :
tfds.robotics.rtx.CmuFrankaExplorationDatasetConvertedExternallyToRlds
संस्करण :
-
0.1.0
(डिफ़ॉल्ट): प्रारंभिक रिलीज़।
-
डाउनलोड आकार :
Unknown size
डेटासेट का आकार :
602.24 MiB
ऑटो-कैश्ड ( दस्तावेज़ीकरण ): नहीं
विभाजन :
विभाजित करना | उदाहरण |
---|---|
'train' | 199 |
- फ़ीचर संरचना :
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(8,), dtype=float32, description=Robot action, consists of [end effector position3x, end effector orientation3x, gripper action1x, episode termination1x].),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'highres_image': Image(shape=(480, 640, 3), dtype=uint8, description=High resolution main camera observation),
'image': Image(shape=(64, 64, 3), dtype=uint8, description=Main camera RGB observation.),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
'structured_action': Tensor(shape=(8,), dtype=float32, description=Structured action, consisting of hybrid affordance and end-effector control, described in Structured World Models from Human Videos.),
}),
})
- फ़ीचर दस्तावेज़ीकरण :
विशेषता | कक्षा | आकार | डीप्रकार | विवरण |
---|---|---|---|---|
फीचर्सडिक्ट | ||||
एपिसोड_मेटाडेटा | फीचर्सडिक्ट | |||
एपिसोड_मेटाडेटा/फ़ाइल_पथ | मूलपाठ | डोरी | मूल डेटा फ़ाइल का पथ. | |
कदम | डेटासेट | |||
कदम/कार्रवाई | टेन्सर | (8,) | फ्लोट32 | रोबोट एक्शन में [एंड इफ़ेक्टर पोज़िशन3x, एंड इफ़ेक्टर ओरिएंटेशन3x, ग्रिपर एक्शन1x, एपिसोड टर्मिनेशन1x] शामिल हैं। |
कदम/छूट | अदिश | फ्लोट32 | यदि छूट प्रदान की गई है, तो डिफ़ॉल्ट 1 है। | |
चरण/पहला है | टेन्सर | बूल | ||
चरण/अंतिम है | टेन्सर | बूल | ||
चरण/is_terminal | टेन्सर | बूल | ||
चरण/भाषा_एम्बेडिंग | टेन्सर | (512,) | फ्लोट32 | कोना भाषा एम्बेडिंग. https://tfhub.dev/google/universal-sentence-encoder-large/5 देखें |
चरण/भाषा_निर्देश | मूलपाठ | डोरी | भाषा निर्देश. | |
कदम/अवलोकन | फीचर्सडिक्ट | |||
चरण/अवलोकन/highres_image | छवि | (480, 640, 3) | uint8 | उच्च रिज़ॉल्यूशन मुख्य कैमरा अवलोकन |
चरण/अवलोकन/छवि | छवि | (64, 64, 3) | uint8 | मुख्य कैमरा आरजीबी अवलोकन। |
कदम/इनाम | अदिश | फ्लोट32 | यदि प्रदान किया गया तो इनाम, डेमो के लिए अंतिम चरण पर 1। | |
चरण/संरचित_कार्रवाई | टेन्सर | (8,) | फ्लोट32 | संरचित कार्रवाई, जिसमें हाइब्रिड सामर्थ्य और अंत-प्रभावक नियंत्रण शामिल है, मानव वीडियो से संरचित विश्व मॉडल में वर्णित है। |
पर्यवेक्षित कुंजियाँ (
as_supervised
doc देखें):None
चित्र ( tfds.show_examples ): समर्थित नहीं है।
उदाहरण ( tfds.as_dataframe ):
- उद्धरण :
@inproceedings{mendonca2023structured,
title={Structured World Models from Human Videos},
author={Mendonca, Russell and Bahl, Shikhar and Pathak, Deepak},
journal={RSS},
year={2023}
}