संग्रह की मदद से व्यवस्थित रहें अपनी प्राथमिकताओं के आधार पर, कॉन्टेंट को सेव करें और कैटगरी में बांटें.

  • विवरण :

रेस्तरां डोमेन में डेटा-टू-टेक्स्ट डेटासेट चेक करें। इनपुट अर्थ अभ्यावेदन में एक संवाद अधिनियम प्रकार (सूचना, पुष्टि आदि), स्लॉट (भोजन, क्षेत्र, आदि) और उनके मूल्य शामिल हैं। यह वेन एट अल द्वारा अंग्रेजी सैन फ्रांसिस्को रेस्तरां डेटासेट के अनुवाद के रूप में उत्पन्न हुआ। (2015)।

विभाजित करना उदाहरण
'test' 842
'train' 3,569
'validation' 781
  • फ़ीचर संरचना :
    'delex_input_text': FeaturesDict({
        'table': Sequence({
            'column_header': string,
            'content': string,
            'row_number': int16,
    'delex_target_text': string,
    'input_text': FeaturesDict({
        'table': Sequence({
            'column_header': string,
            'content': string,
            'row_number': int16,
    'target_text': string,
  • फ़ीचर दस्तावेज़ीकरण :
विशेषता कक्षा आकार डीटाइप विवरण
विशेषताएं डिक्ट
delex_input_text विशेषताएं डिक्ट
delex_input_text/table क्रम
delex_input_text/टेबल/column_header टेन्सर डोरी
delex_input_text/तालिका/सामग्री टेन्सर डोरी
delex_input_text/टेबल/row_number टेन्सर int16
delex_target_text टेन्सर डोरी
इनपुट टेक्स्ट विशेषताएं डिक्ट
इनपुट_टेक्स्ट/टेबल क्रम
input_text/टेबल/column_header टेन्सर डोरी
input_text/तालिका/सामग्री टेन्सर डोरी
इनपुट_टेक्स्ट/टेबल/पंक्ति_नंबर टेन्सर int16
target_text टेन्सर डोरी
  • उद्धरण :
        author = {Dušek, Ondřej and Jurčíček, Filip},
        title = {Neural {Generation} for {Czech}: {Data} and {Baselines} },
        shorttitle = {Neural {Generation} for {Czech} },
        url = {https://www.aclweb.org/anthology/W19-8670/},
        urldate = {2019-10-18},
        booktitle = {Proceedings of the 12th {International} {Conference} on {Natural} {Language} {Generation} ({INLG} 2019)},
        month = oct,
        address = {Tokyo, Japan},
        year = {2019},
        pages = {563--574},
        abstract = {We present the first dataset targeted at end-to-end NLG in Czech in the restaurant domain, along with several strong baseline models using the sequence-to-sequence approach. While non-English NLG is under-explored in general, Czech, as a morphologically rich language, makes the task even harder: Since Czech requires inflecting named entities, delexicalization or copy mechanisms do not work out-of-the-box and lexicalizing the generated outputs is non-trivial. In our experiments, we present two different approaches to this this problem: (1) using a neural language model to select the correct inflected form while lexicalizing, (2) a two-step generation setup: our sequence-to-sequence model generates an interleaved sequence of lemmas and morphological tags, which are then inflected by a morphological generator.},