Help protect the Great Barrier Reef with TensorFlow on Kaggle Join Challenge


This database is intended for experiments in 3D object recognition from shape. It contains images of 50 toys belonging to 5 generic categories: four-legged animals, human figures, airplanes, trucks, and cars. The objects were imaged by two cameras under 6 lighting conditions, 9 elevations (30 to 70 degrees every 5 degrees), and 18 azimuths (0 to 340 every 20 degrees).

The training set is composed of 5 instances of each category (instances 4, 6, 7, 8 and 9), and the test set of the remaining 5 instances (instances 0, 1, 2, 3, and 5).

Split Examples
'test' 24,300
'train' 24,300
  • Features:
    'image': Image(shape=(96, 96, 1), dtype=tf.uint8),
    'image2': Image(shape=(96, 96, 1), dtype=tf.uint8),
    'instance': ClassLabel(shape=(), dtype=tf.int64, num_classes=10),
    'label_azimuth': ClassLabel(shape=(), dtype=tf.int64, num_classes=18),
    'label_category': ClassLabel(shape=(), dtype=tf.int64, num_classes=5),
    'label_elevation': ClassLabel(shape=(), dtype=tf.int64, num_classes=9),
    'label_lighting': ClassLabel(shape=(), dtype=tf.int64, num_classes=6),
  • Citation:
  title={Learning methods for generic object recognition with invariance to pose and lighting},
  author={Yann LeCun and Fu Jie Huang and L{\'e}on Bottou},
  journal={Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition},
  pages={II-104 Vol.2}