- Keterangan :
Penyisipan pasak Kuka iiwa dengan umpan balik paksa
Kode sumber :
tfds.robotics.rtx.StanfordKukaMultimodalDatasetConvertedExternallyToRldsVersi :
-
0.1.0(default): Rilis awal.
-
Ukuran unduhan :
Unknown sizeUkuran kumpulan data :
31.98 GiBCache otomatis ( dokumentasi ): Tidak
Perpecahan :
| Membelah | Contoh |
|---|---|
'train' | 3.000 |
- Struktur fitur :
FeaturesDict({
'episode_metadata': FeaturesDict({
}),
'steps': Dataset({
'action': Tensor(shape=(4,), dtype=float32, description=Robot action, consists of [3x EEF position, 1x gripper open/close].),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'contact': Tensor(shape=(50,), dtype=float32, description=Robot contact information.),
'depth_image': Tensor(shape=(128, 128, 1), dtype=float32, description=Main depth camera observation.),
'ee_forces_continuous': Tensor(shape=(50, 6), dtype=float32, description=Robot end-effector forces.),
'ee_orientation': Tensor(shape=(4,), dtype=float32, description=Robot end-effector orientation quaternion.),
'ee_orientation_vel': Tensor(shape=(3,), dtype=float32, description=Robot end-effector orientation velocity.),
'ee_position': Tensor(shape=(3,), dtype=float32, description=Robot end-effector position.),
'ee_vel': Tensor(shape=(3,), dtype=float32, description=Robot end-effector velocity.),
'ee_yaw': Tensor(shape=(4,), dtype=float32, description=Robot end-effector yaw.),
'ee_yaw_delta': Tensor(shape=(4,), dtype=float32, description=Robot end-effector yaw delta.),
'image': Image(shape=(128, 128, 3), dtype=uint8, description=Main camera RGB observation.),
'joint_pos': Tensor(shape=(7,), dtype=float32, description=Robot joint positions.),
'joint_vel': Tensor(shape=(7,), dtype=float32, description=Robot joint velocities.),
'optical_flow': Tensor(shape=(128, 128, 2), dtype=float32, description=Optical flow.),
'state': Tensor(shape=(8,), dtype=float32, description=Robot proprioceptive information, [7x joint pos, 1x gripper open/close].),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
- Dokumentasi fitur :
| Fitur | Kelas | Membentuk | Tipe D | Keterangan |
|---|---|---|---|---|
| FiturDict | ||||
| episode_metadata | FiturDict | |||
| tangga | Kumpulan data | |||
| langkah/tindakan | Tensor | (4,) | float32 | Aksi robot, terdiri dari [3x posisi EEF, 1x gripper buka/tutup]. |
| langkah/diskon | Skalar | float32 | Diskon jika disediakan, defaultnya adalah 1. | |
| langkah/adalah_pertama | Tensor | bodoh | ||
| langkah/adalah_terakhir | Tensor | bodoh | ||
| langkah/is_terminal | Tensor | bodoh | ||
| langkah/bahasa_penyematan | Tensor | (512,) | float32 | Penyematan bahasa Kona. Lihat https://tfhub.dev/google/universal-sentence-encoder-large/5 |
| langkah/bahasa_instruksi | Teks | rangkaian | Instruksi Bahasa. | |
| langkah/pengamatan | FiturDict | |||
| langkah/observasi/kontak | Tensor | (50,) | float32 | Informasi kontak robot. |
| langkah/pengamatan/kedalaman_gambar | Tensor | (128, 128, 1) | float32 | Pengamatan kamera kedalaman utama. |
| langkah/pengamatan/ee_forces_continuous | Tensor | (50, 6) | float32 | Kekuatan efektor akhir robot. |
| langkah/pengamatan/ee_orientation | Tensor | (4,) | float32 | Angka empat orientasi efektor akhir robot. |
| langkah/pengamatan/ee_orientation_vel | Tensor | (3,) | float32 | Kecepatan orientasi efektor akhir robot. |
| langkah/pengamatan/ee_position | Tensor | (3,) | float32 | Posisi efektor akhir robot. |
| langkah/pengamatan/ee_vel | Tensor | (3,) | float32 | Kecepatan efektor akhir robot. |
| langkah/pengamatan/ee_yaw | Tensor | (4,) | float32 | Efektor akhir robot menguap. |
| langkah/pengamatan/ee_yaw_delta | Tensor | (4,) | float32 | Delta yaw efektor akhir robot. |
| langkah/pengamatan/gambar | Gambar | (128, 128, 3) | uint8 | Pengamatan RGB kamera utama. |
| langkah/pengamatan/joint_pos | Tensor | (7,) | float32 | Posisi sendi robot. |
| langkah/pengamatan/joint_vel | Tensor | (7,) | float32 | Kecepatan sambungan robot. |
| langkah/pengamatan/optical_flow | Tensor | (128, 128, 2) | float32 | Aliran optik. |
| langkah/pengamatan/keadaan | Tensor | (8,) | float32 | Informasi proprioseptif robot, [7x joint pos, 1x gripper buka/tutup]. |
| langkah/hadiah | Skalar | float32 | Hadiah jika diberikan, 1 pada langkah terakhir untuk demo. |
Kunci yang diawasi (Lihat dokumen
as_supervised):NoneGambar ( tfds.show_examples ): Tidak didukung.
Contoh ( tfds.as_dataframe ):
- Kutipan :
@inproceedings{lee2019icra,
title={Making sense of vision and touch: Self-supervised learning of multimodal representations for contact-rich tasks},
author={Lee, Michelle A and Zhu, Yuke and Srinivasan, Krishnan and Shah, Parth and Savarese, Silvio and Fei-Fei, Li and Garg, Animesh and Bohg, Jeannette},
booktitle={2019 IEEE International Conference on Robotics and Automation (ICRA)},
year={2019},
url={https://arxiv.org/abs/1810.10191}
}