Tune in to the first Women in ML Symposium this Tuesday, October 19 at 9am PST Register now

winogrande

  • Description:

The WinoGrande, a large-scale dataset of 44k problems, inspired by the original Winograd Schema Challenge design, but adjusted to improve both the scale and the hardness of the dataset.

Split Examples
'test' 1,767
'train_l' 10,234
'train_m' 2,558
'train_s' 640
'train_xl' 40,398
'train_xs' 160
'validation' 1,267
  • Features:
FeaturesDict({
    'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=2),
    'option1': Text(shape=(), dtype=tf.string),
    'option2': Text(shape=(), dtype=tf.string),
    'sentence': Text(shape=(), dtype=tf.string),
})
  • Citation:
@article{sakaguchi2019winogrande,
    title={WinoGrande: An Adversarial Winograd Schema Challenge at Scale},
    author={Sakaguchi, Keisuke and Bras, Ronan Le and Bhagavatula, Chandra and Choi, Yejin},
    journal={arXiv preprint arXiv:1907.10641},
    year={2019}
}