References:
adversarialQA
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:adversarial_qa/adversarialQA')
- Description:
AdversarialQA is a Reading Comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles using an adversarial model-in-the-loop.
We use three different models; BiDAF (Seo et al., 2016), BERT-Large (Devlin et al., 2018), and RoBERTa-Large (Liu et al., 2019) in the annotation loop and construct three datasets; D(BiDAF), D(BERT), and D(RoBERTa), each with 10,000 training examples, 1,000 validation, and 1,000 test examples.
The adversarial human annotation paradigm ensures that these datasets consist of questions that current state-of-the-art models (at least the ones used as adversaries in the annotation loop) find challenging.
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
3000 |
'train' |
30000 |
'validation' |
3000 |
- Features:
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"metadata": {
"split": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"model_in_the_loop": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
}
dbidaf
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:adversarial_qa/dbidaf')
- Description:
AdversarialQA is a Reading Comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles using an adversarial model-in-the-loop.
We use three different models; BiDAF (Seo et al., 2016), BERT-Large (Devlin et al., 2018), and RoBERTa-Large (Liu et al., 2019) in the annotation loop and construct three datasets; D(BiDAF), D(BERT), and D(RoBERTa), each with 10,000 training examples, 1,000 validation, and 1,000 test examples.
The adversarial human annotation paradigm ensures that these datasets consist of questions that current state-of-the-art models (at least the ones used as adversaries in the annotation loop) find challenging.
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
1000 |
'train' |
10000 |
'validation' |
1000 |
- Features:
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"metadata": {
"split": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"model_in_the_loop": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
}
dbert
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:adversarial_qa/dbert')
- Description:
AdversarialQA is a Reading Comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles using an adversarial model-in-the-loop.
We use three different models; BiDAF (Seo et al., 2016), BERT-Large (Devlin et al., 2018), and RoBERTa-Large (Liu et al., 2019) in the annotation loop and construct three datasets; D(BiDAF), D(BERT), and D(RoBERTa), each with 10,000 training examples, 1,000 validation, and 1,000 test examples.
The adversarial human annotation paradigm ensures that these datasets consist of questions that current state-of-the-art models (at least the ones used as adversaries in the annotation loop) find challenging.
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
1000 |
'train' |
10000 |
'validation' |
1000 |
- Features:
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"metadata": {
"split": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"model_in_the_loop": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
}
droberta
Use the following command to load this dataset in TFDS:
ds = tfds.load('huggingface:adversarial_qa/droberta')
- Description:
AdversarialQA is a Reading Comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles using an adversarial model-in-the-loop.
We use three different models; BiDAF (Seo et al., 2016), BERT-Large (Devlin et al., 2018), and RoBERTa-Large (Liu et al., 2019) in the annotation loop and construct three datasets; D(BiDAF), D(BERT), and D(RoBERTa), each with 10,000 training examples, 1,000 validation, and 1,000 test examples.
The adversarial human annotation paradigm ensures that these datasets consist of questions that current state-of-the-art models (at least the ones used as adversaries in the annotation loop) find challenging.
- License: No known license
- Version: 1.0.0
- Splits:
Split | Examples |
---|---|
'test' |
1000 |
'train' |
10000 |
'validation' |
1000 |
- Features:
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"title": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"context": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answers": {
"feature": {
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer_start": {
"dtype": "int32",
"id": null,
"_type": "Value"
}
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"metadata": {
"split": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"model_in_the_loop": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
}