swedish_medical_ner

Stay organized with collections Save and categorize content based on your preferences.

References:

wiki

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:swedish_medical_ner/wiki')
  • Description:
SwedMedNER is a dataset for training and evaluating Named Entity Recognition systems on medical texts in Swedish.
It is derived from medical articles on the Swedish Wikipedia, Läkartidningen, and 1177 Vårdguiden.
Split Examples
'train' 48720
  • Features:
{
    "sid": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "entities": {
        "feature": {
            "start": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            },
            "end": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            },
            "text": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "type": {
                "num_classes": 3,
                "names": [
                    "Disorder and Finding",
                    "Pharmaceutical Drug",
                    "Body Structure"
                ],
                "names_file": null,
                "id": null,
                "_type": "ClassLabel"
            }
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

lt

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:swedish_medical_ner/lt')
  • Description:
SwedMedNER is a dataset for training and evaluating Named Entity Recognition systems on medical texts in Swedish.
It is derived from medical articles on the Swedish Wikipedia, Läkartidningen, and 1177 Vårdguiden.
Split Examples
'train' 745753
  • Features:
{
    "sid": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "entities": {
        "feature": {
            "start": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            },
            "end": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            },
            "text": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "type": {
                "num_classes": 3,
                "names": [
                    "Disorder and Finding",
                    "Pharmaceutical Drug",
                    "Body Structure"
                ],
                "names_file": null,
                "id": null,
                "_type": "ClassLabel"
            }
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

1177

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:swedish_medical_ner/1177')
  • Description:
SwedMedNER is a dataset for training and evaluating Named Entity Recognition systems on medical texts in Swedish.
It is derived from medical articles on the Swedish Wikipedia, Läkartidningen, and 1177 Vårdguiden.
Split Examples
'train' 927
  • Features:
{
    "sid": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "entities": {
        "feature": {
            "start": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            },
            "end": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            },
            "text": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "type": {
                "num_classes": 3,
                "names": [
                    "Disorder and Finding",
                    "Pharmaceutical Drug",
                    "Body Structure"
                ],
                "names_file": null,
                "id": null,
                "_type": "ClassLabel"
            }
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}