tmu_gfm_dataset

Stay organized with collections Save and categorize content based on your preferences.

References:

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:tmu_gfm_dataset')
  • Description:
A dataset for GEC metrics with manual evaluations of grammaticality, fluency, and meaning preservation for system outputs. More detail about the creation of the dataset can be found in Yoshimura et al. (2020).
  • License: No known license
  • Version: 1.1.0
  • Splits:
Split Examples
'train' 4221
  • Features:
{
    "source": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "output": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "grammer": {
        "feature": {
            "dtype": "int32",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "fluency": {
        "feature": {
            "dtype": "int32",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "meaning": {
        "feature": {
            "dtype": "int32",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "system": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "ave_g": {
        "dtype": "float32",
        "id": null,
        "_type": "Value"
    },
    "ave_f": {
        "dtype": "float32",
        "id": null,
        "_type": "Value"
    },
    "ave_m": {
        "dtype": "float32",
        "id": null,
        "_type": "Value"
    }
}