สำรวจ TF-Hub CORD-19 การฝังแบบหมุนได้

จัดทุกอย่างให้เป็นระเบียบอยู่เสมอด้วยคอลเล็กชัน บันทึกและจัดหมวดหมู่เนื้อหาตามค่ากำหนดของคุณ

ดูบน TensorFlow.org ทำงานใน Google Colab ดูบน GitHub ดาวน์โหลดโน๊ตบุ๊ค ดูรุ่น TF Hub

โมดูล CORD-19 ข้อความหมุนฝังจาก TF-Hub ( https://tfhub.dev/tensorflow/cord-19/swivel-128d/3 ) ถูกสร้างขึ้นเพื่อสนับสนุนนักวิจัยวิเคราะห์ภาษาธรรมชาติข้อความที่เกี่ยวข้องกับการ COVID-19 embeddings เหล่านี้ได้รับการฝึกฝนในชื่อผู้เขียนบทคัดย่อตำราร่างกายและชื่ออ้างอิงของบทความใน ชุดข้อมูลที่ CORD-19

ใน colab นี้ เราจะ:

  • วิเคราะห์คำที่มีความหมายคล้ายกันในพื้นที่ฝัง
  • ฝึกลักษณนามบนชุดข้อมูล SciCite โดยใช้การฝัง CORD-19

ติดตั้ง

import functools
import itertools
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import pandas as pd

import tensorflow as tf

import tensorflow_datasets as tfds
import tensorflow_hub as hub

from tqdm import trange

วิเคราะห์การฝัง

เริ่มต้นด้วยการวิเคราะห์การฝังโดยการคำนวณและกำหนดเมทริกซ์สหสัมพันธ์ระหว่างเงื่อนไขต่างๆ หากการฝังเรียนรู้ที่จะเข้าใจความหมายของคำต่างๆ ได้สำเร็จ เวกเตอร์การฝังของคำที่มีความหมายคล้ายกันควรอยู่ใกล้กัน มาดูคำศัพท์ที่เกี่ยวข้องกับ COVID-19 กันบ้าง

# Use the inner product between two embedding vectors as the similarity measure
def plot_correlation(labels, features):
  corr = np.inner(features, features)
  corr /= np.max(corr)
  sns.heatmap(corr, xticklabels=labels, yticklabels=labels)

# Generate embeddings for some terms
queries = [
  # Related viruses
  'coronavirus', 'SARS', 'MERS',
  # Regions
  'Italy', 'Spain', 'Europe',
  # Symptoms
  'cough', 'fever', 'throat'
]

module = hub.load('https://tfhub.dev/tensorflow/cord-19/swivel-128d/3')
embeddings = module(queries)

plot_correlation(queries, embeddings)

png

เราจะเห็นได้ว่าการฝังนั้นประสบความสำเร็จในการเข้าใจความหมายของคำศัพท์ต่างๆ แต่ละคำมีความคล้ายคลึงกับคำอื่นๆ ในกลุ่มของมัน (เช่น "coronavirus" มีความสัมพันธ์อย่างมากกับ "SARS" และ "MERS") ในขณะที่คำเหล่านี้แตกต่างจากคำในกลุ่มอื่นๆ (เช่น ความคล้ายคลึงกันระหว่าง "SARS" และ "Spain" คือ ใกล้ถึง 0).

ตอนนี้เรามาดูกันว่าเราจะใช้การฝังเหล่านี้เพื่อแก้ปัญหาเฉพาะได้อย่างไร

SciCite: การจัดประเภทเจตนาอ้างอิง

ส่วนนี้แสดงวิธีการใช้การฝังสำหรับงานดาวน์สตรีม เช่น การจัดประเภทข้อความ เราจะใช้ ชุดข้อมูล SciCite จาก TensorFlow ชุดข้อมูลในเจตนารมณ์อ้างอิงประเภทในเอกสารทางวิชาการ ให้ประโยคที่มีการอ้างอิงจากบทความทางวิชาการ ให้จำแนกว่าเจตนาหลักของการอ้างอิงนั้นเป็นข้อมูลพื้นฐาน การใช้วิธีการ หรือการเปรียบเทียบผลลัพธ์

builder = tfds.builder(name='scicite')
builder.download_and_prepare()
train_data, validation_data, test_data = builder.as_dataset(
    split=('train', 'validation', 'test'),
    as_supervised=True)

มาดูตัวอย่างที่มีป้ายกำกับบางส่วนจากชุดฝึกกัน

การฝึกอบรมตัวแยกประเภทเจตนา citaton

เราจะฝึกลักษณนามใน ชุดข้อมูลที่ SciCite ใช้ Keras มาสร้างแบบจำลองที่ใช้การฝัง CORD-19 กับเลเยอร์การจัดหมวดหมู่ที่ด้านบน

ไฮเปอร์พารามิเตอร์

Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 keras_layer (KerasLayer)    (None, 128)               17301632  
                                                                 
 dense (Dense)               (None, 3)                 387       
                                                                 
=================================================================
Total params: 17,302,019
Trainable params: 387
Non-trainable params: 17,301,632
_________________________________________________________________

ฝึกและประเมินแบบจำลอง

มาฝึกและประเมินแบบจำลองเพื่อดูประสิทธิภาพในงาน SciCite กันเถอะ

EPOCHS = 35
BATCH_SIZE = 32

history = model.fit(train_data.shuffle(10000).batch(BATCH_SIZE),
                    epochs=EPOCHS,
                    validation_data=validation_data.batch(BATCH_SIZE),
                    verbose=1)
Epoch 1/35
257/257 [==============================] - 3s 7ms/step - loss: 0.9244 - accuracy: 0.5924 - val_loss: 0.7915 - val_accuracy: 0.6627
Epoch 2/35
257/257 [==============================] - 2s 5ms/step - loss: 0.7097 - accuracy: 0.7152 - val_loss: 0.6799 - val_accuracy: 0.7358
Epoch 3/35
257/257 [==============================] - 2s 7ms/step - loss: 0.6317 - accuracy: 0.7551 - val_loss: 0.6285 - val_accuracy: 0.7544
Epoch 4/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5938 - accuracy: 0.7687 - val_loss: 0.6032 - val_accuracy: 0.7566
Epoch 5/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5724 - accuracy: 0.7750 - val_loss: 0.5871 - val_accuracy: 0.7653
Epoch 6/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5580 - accuracy: 0.7825 - val_loss: 0.5800 - val_accuracy: 0.7653
Epoch 7/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5484 - accuracy: 0.7870 - val_loss: 0.5711 - val_accuracy: 0.7718
Epoch 8/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5417 - accuracy: 0.7896 - val_loss: 0.5648 - val_accuracy: 0.7806
Epoch 9/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5356 - accuracy: 0.7902 - val_loss: 0.5628 - val_accuracy: 0.7740
Epoch 10/35
257/257 [==============================] - 2s 7ms/step - loss: 0.5313 - accuracy: 0.7903 - val_loss: 0.5581 - val_accuracy: 0.7849
Epoch 11/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5277 - accuracy: 0.7928 - val_loss: 0.5555 - val_accuracy: 0.7838
Epoch 12/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5242 - accuracy: 0.7940 - val_loss: 0.5528 - val_accuracy: 0.7849
Epoch 13/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5215 - accuracy: 0.7947 - val_loss: 0.5522 - val_accuracy: 0.7828
Epoch 14/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5190 - accuracy: 0.7961 - val_loss: 0.5527 - val_accuracy: 0.7751
Epoch 15/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5176 - accuracy: 0.7940 - val_loss: 0.5492 - val_accuracy: 0.7806
Epoch 16/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5154 - accuracy: 0.7978 - val_loss: 0.5500 - val_accuracy: 0.7817
Epoch 17/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5136 - accuracy: 0.7968 - val_loss: 0.5488 - val_accuracy: 0.7795
Epoch 18/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5127 - accuracy: 0.7967 - val_loss: 0.5504 - val_accuracy: 0.7838
Epoch 19/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5111 - accuracy: 0.7970 - val_loss: 0.5470 - val_accuracy: 0.7860
Epoch 20/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5101 - accuracy: 0.7972 - val_loss: 0.5471 - val_accuracy: 0.7871
Epoch 21/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5082 - accuracy: 0.7997 - val_loss: 0.5483 - val_accuracy: 0.7784
Epoch 22/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5077 - accuracy: 0.7995 - val_loss: 0.5471 - val_accuracy: 0.7860
Epoch 23/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5064 - accuracy: 0.8012 - val_loss: 0.5439 - val_accuracy: 0.7871
Epoch 24/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5057 - accuracy: 0.7990 - val_loss: 0.5476 - val_accuracy: 0.7882
Epoch 25/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5050 - accuracy: 0.7996 - val_loss: 0.5442 - val_accuracy: 0.7937
Epoch 26/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5045 - accuracy: 0.7999 - val_loss: 0.5455 - val_accuracy: 0.7860
Epoch 27/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5032 - accuracy: 0.7991 - val_loss: 0.5435 - val_accuracy: 0.7893
Epoch 28/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5034 - accuracy: 0.8022 - val_loss: 0.5431 - val_accuracy: 0.7882
Epoch 29/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5025 - accuracy: 0.8017 - val_loss: 0.5441 - val_accuracy: 0.7937
Epoch 30/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5017 - accuracy: 0.8013 - val_loss: 0.5463 - val_accuracy: 0.7838
Epoch 31/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5015 - accuracy: 0.8017 - val_loss: 0.5453 - val_accuracy: 0.7871
Epoch 32/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5011 - accuracy: 0.8014 - val_loss: 0.5448 - val_accuracy: 0.7915
Epoch 33/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5006 - accuracy: 0.8025 - val_loss: 0.5432 - val_accuracy: 0.7893
Epoch 34/35
257/257 [==============================] - 2s 5ms/step - loss: 0.5005 - accuracy: 0.8008 - val_loss: 0.5448 - val_accuracy: 0.7904
Epoch 35/35
257/257 [==============================] - 2s 5ms/step - loss: 0.4996 - accuracy: 0.8016 - val_loss: 0.5448 - val_accuracy: 0.7915
from matplotlib import pyplot as plt
def display_training_curves(training, validation, title, subplot):
  if subplot%10==1: # set up the subplots on the first call
    plt.subplots(figsize=(10,10), facecolor='#F0F0F0')
    plt.tight_layout()
  ax = plt.subplot(subplot)
  ax.set_facecolor('#F8F8F8')
  ax.plot(training)
  ax.plot(validation)
  ax.set_title('model '+ title)
  ax.set_ylabel(title)
  ax.set_xlabel('epoch')
  ax.legend(['train', 'valid.'])
display_training_curves(history.history['accuracy'], history.history['val_accuracy'], 'accuracy', 211)
display_training_curves(history.history['loss'], history.history['val_loss'], 'loss', 212)

png

ประเมินแบบจำลอง

และมาดูกันว่าโมเดลทำงานอย่างไร สองค่าจะถูกส่งกลับ การสูญเสีย (ตัวเลขที่แสดงถึงข้อผิดพลาดของเรา ค่าที่ต่ำกว่าจะดีกว่า) และความแม่นยำ

results = model.evaluate(test_data.batch(512), verbose=2)

for name, value in zip(model.metrics_names, results):
  print('%s: %.3f' % (name, value))
4/4 - 0s - loss: 0.5357 - accuracy: 0.7891 - 441ms/epoch - 110ms/step
loss: 0.536
accuracy: 0.789

เราจะเห็นได้ว่าการสูญเสียลดลงอย่างรวดเร็วในขณะที่ความแม่นยำเพิ่มขึ้นอย่างรวดเร็วโดยเฉพาะ ลองพล็อตตัวอย่างเพื่อตรวจสอบว่าการคาดคะเนเกี่ยวข้องกับป้ายกำกับจริงอย่างไร:

prediction_dataset = next(iter(test_data.batch(20)))

prediction_texts = [ex.numpy().decode('utf8') for ex in prediction_dataset[0]]
prediction_labels = [label2str(x) for x in prediction_dataset[1]]

predictions = [
    label2str(x) for x in np.argmax(model.predict(prediction_texts), axis=-1)]


pd.DataFrame({
    TEXT_FEATURE_NAME: prediction_texts,
    LABEL_NAME: prediction_labels,
    'prediction': predictions
})

เราจะเห็นได้ว่าสำหรับตัวอย่างแบบสุ่มนี้ แบบจำลองคาดการณ์ฉลากที่ถูกต้องเกือบทุกครั้ง ซึ่งบ่งชี้ว่าสามารถฝังประโยคทางวิทยาศาสตร์ได้ค่อนข้างดี

อะไรต่อไป?

เมื่อคุณได้ทราบข้อมูลเพิ่มเติมเกี่ยวกับการฝัง CORD-19 Swivel จาก TF-Hub แล้ว เราขอแนะนำให้คุณเข้าร่วมการแข่งขัน CORD-19 Kaggle เพื่อให้ได้รับข้อมูลเชิงลึกทางวิทยาศาสตร์จากข้อความทางวิชาการที่เกี่ยวข้องกับ COVID-19