Эта страница была переведа с помощью Cloud Translation API.
Switch to English

Классификация по несбалансированным данным

Посмотреть на TensorFlow.org Запустить в Google Colab Посмотреть источник на GitHub Скачать блокнот

Это руководство демонстрирует, как классифицировать сильно несбалансированный набор данных, в котором число примеров в одном классе значительно превосходит количество примеров в другом. Вы будете работать с набором данных для обнаружения мошенничества с кредитными картами, размещенным на Kaggle. Цель состоит в том, чтобы обнаружить всего 492 мошеннических транзакции из 284 807 транзакций в общей сложности. Вы будете использовать Keras для определения модели и весов классов, чтобы помочь модели учиться на несбалансированных данных. ,

Этот учебник содержит полный код для:

  • Загрузите файл CSV, используя Pandas.
  • Создавайте обучающие, проверочные и тестовые наборы.
  • Определите и обучите модель, используя Keras (включая установку весов классов).
  • Оцените модель, используя различные метрики (в том числе точность и отзыв).
  • Попробуйте общие методы для работы с несбалансированными данными, такие как:
    • Класс взвешивания
    • оверсемплингом

Настроить

 import tensorflow as tf
from tensorflow import keras

import os
import tempfile

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns

import sklearn
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
 
 mpl.rcParams['figure.figsize'] = (12, 10)
colors = plt.rcParams['axes.prop_cycle'].by_key()['color']
 

Обработка и исследование данных

Загрузите набор данных о мошенничестве с кредитными картами Kaggle

Pandas - это библиотека Python с множеством полезных утилит для загрузки и работы со структурированными данными, которую можно использовать для загрузки CSV-файлов в кадр данных.

 file = tf.keras.utils
raw_df = pd.read_csv('https://storage.googleapis.com/download.tensorflow.org/data/creditcard.csv')
raw_df.head()
 
 raw_df[['Time', 'V1', 'V2', 'V3', 'V4', 'V5', 'V26', 'V27', 'V28', 'Amount', 'Class']].describe()
 

Изучите дисбаланс меток классов

Давайте посмотрим на дисбаланс набора данных:

 neg, pos = np.bincount(raw_df['Class'])
total = neg + pos
print('Examples:\n    Total: {}\n    Positive: {} ({:.2f}% of total)\n'.format(
    total, pos, 100 * pos / total))
 
Examples:
    Total: 284807
    Positive: 492 (0.17% of total)


Это показывает небольшую долю положительных образцов.

Очистить, разделить и нормализовать данные

Необработанные данные имеют несколько проблем. Во-первых, столбцы Time и Amount слишком переменны, чтобы использовать их напрямую. Удалите столбец Time (поскольку неясно, что он означает) и возьмите журнал столбца Amount чтобы уменьшить его диапазон.

 cleaned_df = raw_df.copy()

# You don't want the `Time` column.
cleaned_df.pop('Time')

# The `Amount` column covers a huge range. Convert to log-space.
eps=0.001 # 0 => 0.1¢
cleaned_df['Log Ammount'] = np.log(cleaned_df.pop('Amount')+eps)
 

Разделите набор данных на обучающие, проверочные и тестовые наборы. Набор проверки используется во время подбора модели для оценки потерь и любых метрик, однако модель не соответствует этим данным. Набор тестов полностью не используется на этапе обучения и используется только в конце, чтобы оценить, насколько хорошо модель обобщается для новых данных. Это особенно важно для несбалансированных наборов данных, где переоснащение является серьезной проблемой из-за отсутствия данных для обучения.

 # Use a utility from sklearn to split and shuffle our dataset.
train_df, test_df = train_test_split(cleaned_df, test_size=0.2)
train_df, val_df = train_test_split(train_df, test_size=0.2)

# Form np arrays of labels and features.
train_labels = np.array(train_df.pop('Class'))
bool_train_labels = train_labels != 0
val_labels = np.array(val_df.pop('Class'))
test_labels = np.array(test_df.pop('Class'))

train_features = np.array(train_df)
val_features = np.array(val_df)
test_features = np.array(test_df)
 

Нормализуйте входные функции, используя sklearn StandardScaler. Это установит среднее значение на 0 и стандартное отклонение на 1.

 scaler = StandardScaler()
train_features = scaler.fit_transform(train_features)

val_features = scaler.transform(val_features)
test_features = scaler.transform(test_features)

train_features = np.clip(train_features, -5, 5)
val_features = np.clip(val_features, -5, 5)
test_features = np.clip(test_features, -5, 5)


print('Training labels shape:', train_labels.shape)
print('Validation labels shape:', val_labels.shape)
print('Test labels shape:', test_labels.shape)

print('Training features shape:', train_features.shape)
print('Validation features shape:', val_features.shape)
print('Test features shape:', test_features.shape)

 
Training labels shape: (182276,)
Validation labels shape: (45569,)
Test labels shape: (56962,)
Training features shape: (182276, 29)
Validation features shape: (45569, 29)
Test features shape: (56962, 29)

Посмотрите на распределение данных

Затем сравните распределения положительных и отрицательных примеров по нескольким признакам. Хорошие вопросы, которые следует задать себе на данный момент:

  • Имеют ли эти распределения смысл?
    • Да. Вы нормализовали ввод, и они в основном сконцентрированы в диапазоне +/- 2 .
  • Вы видите разницу между дистрибутивами?
    • Да, положительные примеры содержат гораздо более высокий показатель экстремальных значений.
 pos_df = pd.DataFrame(train_features[ bool_train_labels], columns = train_df.columns)
neg_df = pd.DataFrame(train_features[~bool_train_labels], columns = train_df.columns)

sns.jointplot(pos_df['V5'], pos_df['V6'],
              kind='hex', xlim = (-5,5), ylim = (-5,5))
plt.suptitle("Positive distribution")

sns.jointplot(neg_df['V5'], neg_df['V6'],
              kind='hex', xlim = (-5,5), ylim = (-5,5))
_ = plt.suptitle("Negative distribution")
 

PNG

PNG

Определить модель и метрики

Определите функцию, которая создает простую нейронную сеть с плотно связанным скрытым слоем, выпадающим слоем для уменьшения переоснащения и выходным сигмовидным слоем, который возвращает вероятность того, что транзакция является мошеннической:

 METRICS = [
      keras.metrics.TruePositives(name='tp'),
      keras.metrics.FalsePositives(name='fp'),
      keras.metrics.TrueNegatives(name='tn'),
      keras.metrics.FalseNegatives(name='fn'), 
      keras.metrics.BinaryAccuracy(name='accuracy'),
      keras.metrics.Precision(name='precision'),
      keras.metrics.Recall(name='recall'),
      keras.metrics.AUC(name='auc'),
]

def make_model(metrics = METRICS, output_bias=None):
  if output_bias is not None:
    output_bias = tf.keras.initializers.Constant(output_bias)
  model = keras.Sequential([
      keras.layers.Dense(
          16, activation='relu',
          input_shape=(train_features.shape[-1],)),
      keras.layers.Dropout(0.5),
      keras.layers.Dense(1, activation='sigmoid',
                         bias_initializer=output_bias),
  ])

  model.compile(
      optimizer=keras.optimizers.Adam(lr=1e-3),
      loss=keras.losses.BinaryCrossentropy(),
      metrics=metrics)

  return model
 

Понимание полезных метрик

Обратите внимание, что есть несколько показателей, определенных выше, которые могут быть рассчитаны моделью, которые будут полезны при оценке производительности.

  • Ложные отрицания и ложные срабатывания - это образцы, которые были неправильно классифицированы
  • Истинные негативы и истинные позитивы - это образцы, которые были правильно классифицированы
  • Точность - это процент правильно классифицированных примеров> $ \ frac {\ text {true samples}} {\ text {total samples}} $
  • Точность - это процент предсказанных позитивов, которые были правильно классифицированы> $ \ frac {\ text {истинные позитивы}} {\ text {истинные позитивы + ложные срабатывания}} $
  • Напоминание - это процент фактических позитивов, которые были правильно классифицированы> $ \ frac {\ text {истинные позитивы}} {\ text {истинные позитивы + ложные негативы}} $
  • AUC относится к области под кривой кривой эксплуатационных характеристик приемника (ROC-AUC). Эта метрика равна вероятности того, что классификатор оценит случайную положительную выборку выше, чем случайная отрицательная выборка.

Читать далее:

Базовая модель

Построить модель

Теперь создайте и обучите вашу модель, используя функцию, которая была определена ранее. Обратите внимание, что модель подходит с использованием размера партии, превышающего размер по умолчанию, равный 2048, это важно для обеспечения того, чтобы у каждой партии был хороший шанс содержать несколько положительных образцов. Если бы размер пакета был слишком мал, у них, скорее всего, не было бы мошеннических транзакций.

 EPOCHS = 100
BATCH_SIZE = 2048

early_stopping = tf.keras.callbacks.EarlyStopping(
    monitor='val_auc', 
    verbose=1,
    patience=10,
    mode='max',
    restore_best_weights=True)
 
 model = make_model()
model.summary()
 
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense (Dense)                (None, 16)                480       
_________________________________________________________________
dropout (Dropout)            (None, 16)                0         
_________________________________________________________________
dense_1 (Dense)              (None, 1)                 17        
=================================================================
Total params: 497
Trainable params: 497
Non-trainable params: 0
_________________________________________________________________

Тестовый прогон модели:

 model.predict(train_features[:10])
 
array([[0.5788107 ],
       [0.44979692],
       [0.5427961 ],
       [0.5985188 ],
       [0.7758075 ],
       [0.3417888 ],
       [0.39359283],
       [0.5399953 ],
       [0.3551327 ],
       [0.47230086]], dtype=float32)

Необязательно: Установите правильное начальное смещение.

Эти первоначальные догадки не велики. Вы знаете, набор данных несбалансирован. Установите смещение выходного слоя, чтобы отразить это (см .: Рецепт для обучения нейронных сетей: «хорошо инициализировать» ). Это может помочь с начальной конвергенцией.

При инициализации смещения по умолчанию потери должны быть примерно math.log(2) = 0.69314

 results = model.evaluate(train_features, train_labels, batch_size=BATCH_SIZE, verbose=0)
print("Loss: {:0.4f}".format(results[0]))
 
Loss: 0.7817

Правильное смещение для установки может быть получено из:

$$ p_0 = pos / (pos + neg) = 1 / (1 + e ^ {- b_0}) $$
$$ b_0 = -log_e (1 / p_0 - 1) $$
$$ b_0 = log_e (pos / neg) $$
 initial_bias = np.log([pos/neg])
initial_bias
 
array([-6.35935934])

Установите это в качестве начального смещения, и модель даст гораздо более разумные начальные догадки.

Должно быть около: pos/total = 0.0018

 model = make_model(output_bias = initial_bias)
model.predict(train_features[:10])
 
array([[0.00093563],
       [0.00187903],
       [0.00109238],
       [0.00117128],
       [0.00134988],
       [0.00090826],
       [0.00099455],
       [0.00154405],
       [0.00100204],
       [0.0004291 ]], dtype=float32)

При такой инициализации начальные потери должны быть примерно:

$$ - p_0log (p_0) - (1-p_0) log (1-p_0) = 0,01317 $$
 results = model.evaluate(train_features, train_labels, batch_size=BATCH_SIZE, verbose=0)
print("Loss: {:0.4f}".format(results[0]))
 
Loss: 0.0146

Эта первоначальная потеря примерно в 50 раз меньше, чем если бы была наивная инициализация.

Таким образом, модели не нужно тратить первые несколько эпох, просто узнав, что положительные примеры маловероятны. Это также облегчает чтение графиков потерь во время тренировок.

Контрольная точка начальных весов

Чтобы сделать различные тренировочные прогоны более сопоставимыми, сохраните веса этой исходной модели в файле контрольных точек и загрузите их в каждую модель перед тренировкой.

 initial_weights = os.path.join(tempfile.mkdtemp(),'initial_weights')
model.save_weights(initial_weights)
 

Убедитесь, что исправление смещения помогает

Прежде чем двигаться дальше, быстро подтвердите, что тщательная инициализация смещения действительно помогла.

Тренируйте модель в течение 20 эпох, с этой тщательной инициализацией и без нее, и сравните потери:

 model = make_model()
model.load_weights(initial_weights)
model.layers[-1].bias.assign([0.0])
zero_bias_history = model.fit(
    train_features,
    train_labels,
    batch_size=BATCH_SIZE,
    epochs=20,
    validation_data=(val_features, val_labels), 
    verbose=0)
 
 model = make_model()
model.load_weights(initial_weights)
careful_bias_history = model.fit(
    train_features,
    train_labels,
    batch_size=BATCH_SIZE,
    epochs=20,
    validation_data=(val_features, val_labels), 
    verbose=0)
 
 def plot_loss(history, label, n):
  # Use a log scale to show the wide range of values.
  plt.semilogy(history.epoch,  history.history['loss'],
               color=colors[n], label='Train '+label)
  plt.semilogy(history.epoch,  history.history['val_loss'],
          color=colors[n], label='Val '+label,
          linestyle="--")
  plt.xlabel('Epoch')
  plt.ylabel('Loss')
  
  plt.legend()
 
 plot_loss(zero_bias_history, "Zero Bias", 0)
plot_loss(careful_bias_history, "Careful Bias", 1)
 

PNG

Приведенный выше рисунок проясняет: с точки зрения потерь при валидации, эта осторожная инициализация дает явное преимущество.

Тренируй модель

 model = make_model()
model.load_weights(initial_weights)
baseline_history = model.fit(
    train_features,
    train_labels,
    batch_size=BATCH_SIZE,
    epochs=EPOCHS,
    callbacks = [early_stopping],
    validation_data=(val_features, val_labels))
 
Epoch 1/100
90/90 [==============================] - 1s 13ms/step - loss: 0.0112 - tp: 100.0000 - fp: 25.0000 - tn: 227419.0000 - fn: 301.0000 - accuracy: 0.9986 - precision: 0.8000 - recall: 0.2494 - auc: 0.7615 - val_loss: 0.0067 - val_tp: 15.0000 - val_fp: 2.0000 - val_tn: 45480.0000 - val_fn: 72.0000 - val_accuracy: 0.9984 - val_precision: 0.8824 - val_recall: 0.1724 - val_auc: 0.9077
Epoch 2/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0075 - tp: 108.0000 - fp: 24.0000 - tn: 181938.0000 - fn: 206.0000 - accuracy: 0.9987 - precision: 0.8182 - recall: 0.3439 - auc: 0.8491 - val_loss: 0.0046 - val_tp: 45.0000 - val_fp: 6.0000 - val_tn: 45476.0000 - val_fn: 42.0000 - val_accuracy: 0.9989 - val_precision: 0.8824 - val_recall: 0.5172 - val_auc: 0.9308
Epoch 3/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0065 - tp: 138.0000 - fp: 27.0000 - tn: 181935.0000 - fn: 176.0000 - accuracy: 0.9989 - precision: 0.8364 - recall: 0.4395 - auc: 0.8567 - val_loss: 0.0040 - val_tp: 54.0000 - val_fp: 7.0000 - val_tn: 45475.0000 - val_fn: 33.0000 - val_accuracy: 0.9991 - val_precision: 0.8852 - val_recall: 0.6207 - val_auc: 0.9365
Epoch 4/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0060 - tp: 154.0000 - fp: 33.0000 - tn: 181929.0000 - fn: 160.0000 - accuracy: 0.9989 - precision: 0.8235 - recall: 0.4904 - auc: 0.8848 - val_loss: 0.0037 - val_tp: 61.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 26.0000 - val_accuracy: 0.9993 - val_precision: 0.8841 - val_recall: 0.7011 - val_auc: 0.9422
Epoch 5/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0057 - tp: 157.0000 - fp: 36.0000 - tn: 181926.0000 - fn: 157.0000 - accuracy: 0.9989 - precision: 0.8135 - recall: 0.5000 - auc: 0.8982 - val_loss: 0.0035 - val_tp: 62.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 25.0000 - val_accuracy: 0.9993 - val_precision: 0.8857 - val_recall: 0.7126 - val_auc: 0.9422
Epoch 6/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0057 - tp: 152.0000 - fp: 32.0000 - tn: 181930.0000 - fn: 162.0000 - accuracy: 0.9989 - precision: 0.8261 - recall: 0.4841 - auc: 0.8934 - val_loss: 0.0033 - val_tp: 65.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 22.0000 - val_accuracy: 0.9993 - val_precision: 0.8904 - val_recall: 0.7471 - val_auc: 0.9479
Epoch 7/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0052 - tp: 174.0000 - fp: 30.0000 - tn: 181932.0000 - fn: 140.0000 - accuracy: 0.9991 - precision: 0.8529 - recall: 0.5541 - auc: 0.8983 - val_loss: 0.0032 - val_tp: 66.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 21.0000 - val_accuracy: 0.9994 - val_precision: 0.8919 - val_recall: 0.7586 - val_auc: 0.9479
Epoch 8/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0054 - tp: 161.0000 - fp: 32.0000 - tn: 181930.0000 - fn: 153.0000 - accuracy: 0.9990 - precision: 0.8342 - recall: 0.5127 - auc: 0.8983 - val_loss: 0.0031 - val_tp: 66.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 21.0000 - val_accuracy: 0.9994 - val_precision: 0.8919 - val_recall: 0.7586 - val_auc: 0.9479
Epoch 9/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0050 - tp: 167.0000 - fp: 37.0000 - tn: 181925.0000 - fn: 147.0000 - accuracy: 0.9990 - precision: 0.8186 - recall: 0.5318 - auc: 0.9064 - val_loss: 0.0030 - val_tp: 65.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 22.0000 - val_accuracy: 0.9993 - val_precision: 0.8904 - val_recall: 0.7471 - val_auc: 0.9479
Epoch 10/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0053 - tp: 156.0000 - fp: 34.0000 - tn: 181928.0000 - fn: 158.0000 - accuracy: 0.9989 - precision: 0.8211 - recall: 0.4968 - auc: 0.9046 - val_loss: 0.0029 - val_tp: 67.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 20.0000 - val_accuracy: 0.9994 - val_precision: 0.8933 - val_recall: 0.7701 - val_auc: 0.9479
Epoch 11/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0048 - tp: 165.0000 - fp: 32.0000 - tn: 181930.0000 - fn: 149.0000 - accuracy: 0.9990 - precision: 0.8376 - recall: 0.5255 - auc: 0.9063 - val_loss: 0.0029 - val_tp: 68.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 19.0000 - val_accuracy: 0.9994 - val_precision: 0.8947 - val_recall: 0.7816 - val_auc: 0.9479
Epoch 12/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0051 - tp: 165.0000 - fp: 35.0000 - tn: 181927.0000 - fn: 149.0000 - accuracy: 0.9990 - precision: 0.8250 - recall: 0.5255 - auc: 0.9110 - val_loss: 0.0028 - val_tp: 67.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 20.0000 - val_accuracy: 0.9994 - val_precision: 0.8933 - val_recall: 0.7701 - val_auc: 0.9480
Epoch 13/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0050 - tp: 157.0000 - fp: 29.0000 - tn: 181933.0000 - fn: 157.0000 - accuracy: 0.9990 - precision: 0.8441 - recall: 0.5000 - auc: 0.9031 - val_loss: 0.0028 - val_tp: 69.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 18.0000 - val_accuracy: 0.9994 - val_precision: 0.8961 - val_recall: 0.7931 - val_auc: 0.9479
Epoch 14/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0053 - tp: 160.0000 - fp: 35.0000 - tn: 181927.0000 - fn: 154.0000 - accuracy: 0.9990 - precision: 0.8205 - recall: 0.5096 - auc: 0.8934 - val_loss: 0.0027 - val_tp: 69.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 18.0000 - val_accuracy: 0.9994 - val_precision: 0.8961 - val_recall: 0.7931 - val_auc: 0.9479
Epoch 15/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0049 - tp: 168.0000 - fp: 36.0000 - tn: 181926.0000 - fn: 146.0000 - accuracy: 0.9990 - precision: 0.8235 - recall: 0.5350 - auc: 0.9031 - val_loss: 0.0027 - val_tp: 68.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 19.0000 - val_accuracy: 0.9994 - val_precision: 0.8947 - val_recall: 0.7816 - val_auc: 0.9479
Epoch 16/100
90/90 [==============================] - 1s 7ms/step - loss: 0.0046 - tp: 169.0000 - fp: 30.0000 - tn: 181932.0000 - fn: 145.0000 - accuracy: 0.9990 - precision: 0.8492 - recall: 0.5382 - auc: 0.9143 - val_loss: 0.0027 - val_tp: 68.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 19.0000 - val_accuracy: 0.9994 - val_precision: 0.8947 - val_recall: 0.7816 - val_auc: 0.9537
Epoch 17/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0045 - tp: 181.0000 - fp: 32.0000 - tn: 181930.0000 - fn: 133.0000 - accuracy: 0.9991 - precision: 0.8498 - recall: 0.5764 - auc: 0.9144 - val_loss: 0.0027 - val_tp: 70.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 17.0000 - val_accuracy: 0.9995 - val_precision: 0.8974 - val_recall: 0.8046 - val_auc: 0.9537
Epoch 18/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0045 - tp: 181.0000 - fp: 29.0000 - tn: 181933.0000 - fn: 133.0000 - accuracy: 0.9991 - precision: 0.8619 - recall: 0.5764 - auc: 0.9112 - val_loss: 0.0026 - val_tp: 69.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 18.0000 - val_accuracy: 0.9994 - val_precision: 0.8961 - val_recall: 0.7931 - val_auc: 0.9537
Epoch 19/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0046 - tp: 172.0000 - fp: 32.0000 - tn: 181930.0000 - fn: 142.0000 - accuracy: 0.9990 - precision: 0.8431 - recall: 0.5478 - auc: 0.9096 - val_loss: 0.0026 - val_tp: 68.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 19.0000 - val_accuracy: 0.9994 - val_precision: 0.8947 - val_recall: 0.7816 - val_auc: 0.9537
Epoch 20/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0045 - tp: 177.0000 - fp: 35.0000 - tn: 181927.0000 - fn: 137.0000 - accuracy: 0.9991 - precision: 0.8349 - recall: 0.5637 - auc: 0.9128 - val_loss: 0.0026 - val_tp: 71.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 16.0000 - val_accuracy: 0.9995 - val_precision: 0.8987 - val_recall: 0.8161 - val_auc: 0.9537
Epoch 21/100
90/90 [==============================] - 1s 7ms/step - loss: 0.0045 - tp: 176.0000 - fp: 32.0000 - tn: 181930.0000 - fn: 138.0000 - accuracy: 0.9991 - precision: 0.8462 - recall: 0.5605 - auc: 0.9096 - val_loss: 0.0026 - val_tp: 66.0000 - val_fp: 6.0000 - val_tn: 45476.0000 - val_fn: 21.0000 - val_accuracy: 0.9994 - val_precision: 0.9167 - val_recall: 0.7586 - val_auc: 0.9537
Epoch 22/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0047 - tp: 163.0000 - fp: 33.0000 - tn: 181929.0000 - fn: 151.0000 - accuracy: 0.9990 - precision: 0.8316 - recall: 0.5191 - auc: 0.9096 - val_loss: 0.0026 - val_tp: 71.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 16.0000 - val_accuracy: 0.9995 - val_precision: 0.8987 - val_recall: 0.8161 - val_auc: 0.9537
Epoch 23/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0046 - tp: 183.0000 - fp: 38.0000 - tn: 181924.0000 - fn: 131.0000 - accuracy: 0.9991 - precision: 0.8281 - recall: 0.5828 - auc: 0.9113 - val_loss: 0.0026 - val_tp: 66.0000 - val_fp: 7.0000 - val_tn: 45475.0000 - val_fn: 21.0000 - val_accuracy: 0.9994 - val_precision: 0.9041 - val_recall: 0.7586 - val_auc: 0.9537
Epoch 24/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0045 - tp: 168.0000 - fp: 32.0000 - tn: 181930.0000 - fn: 146.0000 - accuracy: 0.9990 - precision: 0.8400 - recall: 0.5350 - auc: 0.9128 - val_loss: 0.0026 - val_tp: 71.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 16.0000 - val_accuracy: 0.9995 - val_precision: 0.8987 - val_recall: 0.8161 - val_auc: 0.9537
Epoch 25/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0042 - tp: 179.0000 - fp: 32.0000 - tn: 181930.0000 - fn: 135.0000 - accuracy: 0.9991 - precision: 0.8483 - recall: 0.5701 - auc: 0.9161 - val_loss: 0.0026 - val_tp: 71.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 16.0000 - val_accuracy: 0.9995 - val_precision: 0.8987 - val_recall: 0.8161 - val_auc: 0.9537
Epoch 26/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0045 - tp: 173.0000 - fp: 38.0000 - tn: 181924.0000 - fn: 141.0000 - accuracy: 0.9990 - precision: 0.8199 - recall: 0.5510 - auc: 0.9208 - val_loss: 0.0026 - val_tp: 71.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 16.0000 - val_accuracy: 0.9995 - val_precision: 0.8987 - val_recall: 0.8161 - val_auc: 0.9537
Epoch 27/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0045 - tp: 172.0000 - fp: 32.0000 - tn: 181930.0000 - fn: 142.0000 - accuracy: 0.9990 - precision: 0.8431 - recall: 0.5478 - auc: 0.9081 - val_loss: 0.0026 - val_tp: 71.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 16.0000 - val_accuracy: 0.9995 - val_precision: 0.8987 - val_recall: 0.8161 - val_auc: 0.9537
Epoch 28/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0044 - tp: 181.0000 - fp: 39.0000 - tn: 181923.0000 - fn: 133.0000 - accuracy: 0.9991 - precision: 0.8227 - recall: 0.5764 - auc: 0.9193 - val_loss: 0.0025 - val_tp: 68.0000 - val_fp: 6.0000 - val_tn: 45476.0000 - val_fn: 19.0000 - val_accuracy: 0.9995 - val_precision: 0.9189 - val_recall: 0.7816 - val_auc: 0.9537
Epoch 29/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0042 - tp: 177.0000 - fp: 38.0000 - tn: 181924.0000 - fn: 137.0000 - accuracy: 0.9990 - precision: 0.8233 - recall: 0.5637 - auc: 0.9305 - val_loss: 0.0025 - val_tp: 67.0000 - val_fp: 7.0000 - val_tn: 45475.0000 - val_fn: 20.0000 - val_accuracy: 0.9994 - val_precision: 0.9054 - val_recall: 0.7701 - val_auc: 0.9538
Epoch 30/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0045 - tp: 168.0000 - fp: 31.0000 - tn: 181931.0000 - fn: 146.0000 - accuracy: 0.9990 - precision: 0.8442 - recall: 0.5350 - auc: 0.9161 - val_loss: 0.0025 - val_tp: 69.0000 - val_fp: 6.0000 - val_tn: 45476.0000 - val_fn: 18.0000 - val_accuracy: 0.9995 - val_precision: 0.9200 - val_recall: 0.7931 - val_auc: 0.9537
Epoch 31/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0045 - tp: 172.0000 - fp: 35.0000 - tn: 181927.0000 - fn: 142.0000 - accuracy: 0.9990 - precision: 0.8309 - recall: 0.5478 - auc: 0.9176 - val_loss: 0.0025 - val_tp: 71.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 16.0000 - val_accuracy: 0.9995 - val_precision: 0.8987 - val_recall: 0.8161 - val_auc: 0.9538
Epoch 32/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0040 - tp: 188.0000 - fp: 33.0000 - tn: 181929.0000 - fn: 126.0000 - accuracy: 0.9991 - precision: 0.8507 - recall: 0.5987 - auc: 0.9162 - val_loss: 0.0025 - val_tp: 70.0000 - val_fp: 7.0000 - val_tn: 45475.0000 - val_fn: 17.0000 - val_accuracy: 0.9995 - val_precision: 0.9091 - val_recall: 0.8046 - val_auc: 0.9538
Epoch 33/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0041 - tp: 184.0000 - fp: 27.0000 - tn: 181935.0000 - fn: 130.0000 - accuracy: 0.9991 - precision: 0.8720 - recall: 0.5860 - auc: 0.9225 - val_loss: 0.0025 - val_tp: 72.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 15.0000 - val_accuracy: 0.9995 - val_precision: 0.9000 - val_recall: 0.8276 - val_auc: 0.9537
Epoch 34/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0041 - tp: 185.0000 - fp: 33.0000 - tn: 181929.0000 - fn: 129.0000 - accuracy: 0.9991 - precision: 0.8486 - recall: 0.5892 - auc: 0.9273 - val_loss: 0.0025 - val_tp: 71.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 16.0000 - val_accuracy: 0.9995 - val_precision: 0.8987 - val_recall: 0.8161 - val_auc: 0.9537
Epoch 35/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0044 - tp: 178.0000 - fp: 36.0000 - tn: 181926.0000 - fn: 136.0000 - accuracy: 0.9991 - precision: 0.8318 - recall: 0.5669 - auc: 0.9160 - val_loss: 0.0025 - val_tp: 71.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 16.0000 - val_accuracy: 0.9995 - val_precision: 0.8987 - val_recall: 0.8161 - val_auc: 0.9537
Epoch 36/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0045 - tp: 171.0000 - fp: 33.0000 - tn: 181929.0000 - fn: 143.0000 - accuracy: 0.9990 - precision: 0.8382 - recall: 0.5446 - auc: 0.9192 - val_loss: 0.0025 - val_tp: 71.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 16.0000 - val_accuracy: 0.9995 - val_precision: 0.8987 - val_recall: 0.8161 - val_auc: 0.9538
Epoch 37/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0042 - tp: 189.0000 - fp: 35.0000 - tn: 181927.0000 - fn: 125.0000 - accuracy: 0.9991 - precision: 0.8438 - recall: 0.6019 - auc: 0.9242 - val_loss: 0.0025 - val_tp: 69.0000 - val_fp: 6.0000 - val_tn: 45476.0000 - val_fn: 18.0000 - val_accuracy: 0.9995 - val_precision: 0.9200 - val_recall: 0.7931 - val_auc: 0.9538
Epoch 38/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0041 - tp: 185.0000 - fp: 25.0000 - tn: 181937.0000 - fn: 129.0000 - accuracy: 0.9992 - precision: 0.8810 - recall: 0.5892 - auc: 0.9176 - val_loss: 0.0025 - val_tp: 71.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 16.0000 - val_accuracy: 0.9995 - val_precision: 0.8987 - val_recall: 0.8161 - val_auc: 0.9537
Epoch 39/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0043 - tp: 181.0000 - fp: 35.0000 - tn: 181927.0000 - fn: 133.0000 - accuracy: 0.9991 - precision: 0.8380 - recall: 0.5764 - auc: 0.9225 - val_loss: 0.0025 - val_tp: 68.0000 - val_fp: 6.0000 - val_tn: 45476.0000 - val_fn: 19.0000 - val_accuracy: 0.9995 - val_precision: 0.9189 - val_recall: 0.7816 - val_auc: 0.9538
Epoch 40/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0043 - tp: 175.0000 - fp: 30.0000 - tn: 181932.0000 - fn: 139.0000 - accuracy: 0.9991 - precision: 0.8537 - recall: 0.5573 - auc: 0.9209 - val_loss: 0.0025 - val_tp: 69.0000 - val_fp: 6.0000 - val_tn: 45476.0000 - val_fn: 18.0000 - val_accuracy: 0.9995 - val_precision: 0.9200 - val_recall: 0.7931 - val_auc: 0.9538
Epoch 41/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0041 - tp: 180.0000 - fp: 32.0000 - tn: 181930.0000 - fn: 134.0000 - accuracy: 0.9991 - precision: 0.8491 - recall: 0.5732 - auc: 0.9320 - val_loss: 0.0025 - val_tp: 71.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 16.0000 - val_accuracy: 0.9995 - val_precision: 0.8987 - val_recall: 0.8161 - val_auc: 0.9537
Epoch 42/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0040 - tp: 188.0000 - fp: 34.0000 - tn: 181928.0000 - fn: 126.0000 - accuracy: 0.9991 - precision: 0.8468 - recall: 0.5987 - auc: 0.9209 - val_loss: 0.0025 - val_tp: 71.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 16.0000 - val_accuracy: 0.9995 - val_precision: 0.8987 - val_recall: 0.8161 - val_auc: 0.9538
Epoch 43/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0043 - tp: 176.0000 - fp: 33.0000 - tn: 181929.0000 - fn: 138.0000 - accuracy: 0.9991 - precision: 0.8421 - recall: 0.5605 - auc: 0.9225 - val_loss: 0.0025 - val_tp: 69.0000 - val_fp: 6.0000 - val_tn: 45476.0000 - val_fn: 18.0000 - val_accuracy: 0.9995 - val_precision: 0.9200 - val_recall: 0.7931 - val_auc: 0.9538
Epoch 44/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0042 - tp: 172.0000 - fp: 37.0000 - tn: 181925.0000 - fn: 142.0000 - accuracy: 0.9990 - precision: 0.8230 - recall: 0.5478 - auc: 0.9129 - val_loss: 0.0025 - val_tp: 69.0000 - val_fp: 7.0000 - val_tn: 45475.0000 - val_fn: 18.0000 - val_accuracy: 0.9995 - val_precision: 0.9079 - val_recall: 0.7931 - val_auc: 0.9537
Epoch 45/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0043 - tp: 175.0000 - fp: 36.0000 - tn: 181926.0000 - fn: 139.0000 - accuracy: 0.9990 - precision: 0.8294 - recall: 0.5573 - auc: 0.9368 - val_loss: 0.0025 - val_tp: 69.0000 - val_fp: 7.0000 - val_tn: 45475.0000 - val_fn: 18.0000 - val_accuracy: 0.9995 - val_precision: 0.9079 - val_recall: 0.7931 - val_auc: 0.9537
Epoch 46/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0043 - tp: 176.0000 - fp: 33.0000 - tn: 181929.0000 - fn: 138.0000 - accuracy: 0.9991 - precision: 0.8421 - recall: 0.5605 - auc: 0.9240 - val_loss: 0.0025 - val_tp: 69.0000 - val_fp: 7.0000 - val_tn: 45475.0000 - val_fn: 18.0000 - val_accuracy: 0.9995 - val_precision: 0.9079 - val_recall: 0.7931 - val_auc: 0.9538
Epoch 47/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0039 - tp: 178.0000 - fp: 27.0000 - tn: 181935.0000 - fn: 136.0000 - accuracy: 0.9991 - precision: 0.8683 - recall: 0.5669 - auc: 0.9273 - val_loss: 0.0025 - val_tp: 72.0000 - val_fp: 8.0000 - val_tn: 45474.0000 - val_fn: 15.0000 - val_accuracy: 0.9995 - val_precision: 0.9000 - val_recall: 0.8276 - val_auc: 0.9537
Epoch 48/100
90/90 [==============================] - 1s 6ms/step - loss: 0.0039 - tp: 198.0000 - fp: 34.0000 - tn: 181928.0000 - fn: 116.0000 - accuracy: 0.9992 - precision: 0.8534 - recall: 0.6306 - auc: 0.9256 - val_loss: 0.0025 - val_tp: 68.0000 - val_fp: 5.0000 - val_tn: 45477.0000 - val_fn: 19.0000 - val_accuracy: 0.9995 - val_precision: 0.9315 - val_recall: 0.7816 - val_auc: 0.9538
Epoch 49/100
85/90 [===========================>..] - ETA: 0s - loss: 0.0043 - tp: 162.0000 - fp: 29.0000 - tn: 173750.0000 - fn: 139.0000 - accuracy: 0.9990 - precision: 0.8482 - recall: 0.5382 - auc: 0.9157Restoring model weights from the end of the best epoch.
90/90 [==============================] - 1s 6ms/step - loss: 0.0042 - tp: 171.0000 - fp: 30.0000 - tn: 181932.0000 - fn: 143.0000 - accuracy: 0.9991 - precision: 0.8507 - recall: 0.5446 - auc: 0.9191 - val_loss: 0.0024 - val_tp: 69.0000 - val_fp: 6.0000 - val_tn: 45476.0000 - val_fn: 18.0000 - val_accuracy: 0.9995 - val_precision: 0.9200 - val_recall: 0.7931 - val_auc: 0.9537
Epoch 00049: early stopping

Проверьте историю тренировок

В этом разделе вы будете составлять графики точности и потерь вашей модели в наборе обучения и проверки. Они полезны для проверки переоснащения, о котором вы можете узнать больше в этом уроке .

Кроме того, вы можете создать эти графики для любой из метрик, созданных вами выше. Ложные негативы включены в качестве примера.

 def plot_metrics(history):
  metrics =  ['loss', 'auc', 'precision', 'recall']
  for n, metric in enumerate(metrics):
    name = metric.replace("_"," ").capitalize()
    plt.subplot(2,2,n+1)
    plt.plot(history.epoch,  history.history[metric], color=colors[0], label='Train')
    plt.plot(history.epoch, history.history['val_'+metric],
             color=colors[0], linestyle="--", label='Val')
    plt.xlabel('Epoch')
    plt.ylabel(name)
    if metric == 'loss':
      plt.ylim([0, plt.ylim()[1]])
    elif metric == 'auc':
      plt.ylim([0.8,1])
    else:
      plt.ylim([0,1])

    plt.legend()

 
 plot_metrics(baseline_history)
 

PNG

Оценить метрики

Вы можете использовать матрицу путаницы для суммирования фактических и прогнозируемых меток, где ось X является прогнозируемой меткой, а ось Y - фактической меткой.

 train_predictions_baseline = model.predict(train_features, batch_size=BATCH_SIZE)
test_predictions_baseline = model.predict(test_features, batch_size=BATCH_SIZE)
 
 def plot_cm(labels, predictions, p=0.5):
  cm = confusion_matrix(labels, predictions > p)
  plt.figure(figsize=(5,5))
  sns.heatmap(cm, annot=True, fmt="d")
  plt.title('Confusion matrix @{:.2f}'.format(p))
  plt.ylabel('Actual label')
  plt.xlabel('Predicted label')

  print('Legitimate Transactions Detected (True Negatives): ', cm[0][0])
  print('Legitimate Transactions Incorrectly Detected (False Positives): ', cm[0][1])
  print('Fraudulent Transactions Missed (False Negatives): ', cm[1][0])
  print('Fraudulent Transactions Detected (True Positives): ', cm[1][1])
  print('Total Fraudulent Transactions: ', np.sum(cm[1]))
 

Оцените вашу модель по тестовому набору данных и отобразите результаты для метрик, которые вы создали выше.

 baseline_results = model.evaluate(test_features, test_labels,
                                  batch_size=BATCH_SIZE, verbose=0)
for name, value in zip(model.metrics_names, baseline_results):
  print(name, ': ', value)
print()

plot_cm(test_labels, test_predictions_baseline)
 
loss :  0.002310588490217924
tp :  69.0
fp :  5.0
tn :  56866.0
fn :  22.0
accuracy :  0.9995260238647461
precision :  0.9324324131011963
recall :  0.7582417726516724
auc :  0.9557874202728271

Legitimate Transactions Detected (True Negatives):  56866
Legitimate Transactions Incorrectly Detected (False Positives):  5
Fraudulent Transactions Missed (False Negatives):  22
Fraudulent Transactions Detected (True Positives):  69
Total Fraudulent Transactions:  91

PNG

Если бы модель предсказывала все идеально, это была бы диагональная матрица, где значения вне главной диагонали, указывающие на неправильные предсказания, были бы равны нулю. В этом случае матрица показывает, что у вас относительно мало ложных срабатываний, а это означает, что было относительно немного законных транзакций, которые были неправильно помечены. Однако вы, вероятно, захотите иметь еще меньше ложных негативов, несмотря на затраты на увеличение количества ложных срабатываний. Этот компромисс может быть предпочтительнее, потому что ложные отрицания позволят совершать мошеннические транзакции, в то время как ложные срабатывания могут привести к тому, что клиенту будет отправлено электронное письмо с просьбой проверить свою карточную активность.

Участок РПЦ

Теперь заговор РПЦ . Этот график полезен, потому что он на первый взгляд показывает диапазон производительности, которого модель может достичь, просто настроив выходной порог.

 def plot_roc(name, labels, predictions, **kwargs):
  fp, tp, _ = sklearn.metrics.roc_curve(labels, predictions)

  plt.plot(100*fp, 100*tp, label=name, linewidth=2, **kwargs)
  plt.xlabel('False positives [%]')
  plt.ylabel('True positives [%]')
  plt.xlim([-0.5,20])
  plt.ylim([80,100.5])
  plt.grid(True)
  ax = plt.gca()
  ax.set_aspect('equal')
 
 plot_roc("Train Baseline", train_labels, train_predictions_baseline, color=colors[0])
plot_roc("Test Baseline", test_labels, test_predictions_baseline, color=colors[0], linestyle='--')
plt.legend(loc='lower right')
 
<matplotlib.legend.Legend at 0x7fa50c5adef0>

PNG

Похоже, что точность относительно высока, но отзыв и область под кривой ROC (AUC) не так высоки, как хотелось бы. Классификаторы часто сталкиваются с проблемами при попытке максимизировать как точность, так и отзыв, что особенно актуально при работе с несбалансированными наборами данных. Важно учитывать стоимость различных типов ошибок в контексте проблемы, которая вас волнует. В этом примере ложный отрицательный результат (мошенническая транзакция пропущена) может иметь финансовые затраты, в то время как ложный отрицательный результат (транзакция ошибочно помечена как мошенническая) может снизить радость пользователя.

Класс весов

Рассчитать вес класса

Цель состоит в том, чтобы выявлять мошеннические транзакции, но у вас не так много положительных примеров для работы, поэтому вы бы хотели, чтобы классификатор сильно взвесил несколько доступных примеров. Вы можете сделать это, передавая веса Keras для каждого класса через параметр. Это заставит модель «уделять больше внимания» примерам из недопредставленного класса.

 # Scaling by total/2 helps keep the loss to a similar magnitude.
# The sum of the weights of all examples stays the same.
weight_for_0 = (1 / neg)*(total)/2.0 
weight_for_1 = (1 / pos)*(total)/2.0

class_weight = {0: weight_for_0, 1: weight_for_1}

print('Weight for class 0: {:.2f}'.format(weight_for_0))
print('Weight for class 1: {:.2f}'.format(weight_for_1))
 
Weight for class 0: 0.50
Weight for class 1: 289.44

Тренируй модель с весами классов

Теперь попробуйте переобучить и оценить модель с весами классов, чтобы увидеть, как это влияет на прогнозы.

 weighted_model = make_model()
weighted_model.load_weights(initial_weights)

weighted_history = weighted_model.fit(
    train_features,
    train_labels,
    batch_size=BATCH_SIZE,
    epochs=EPOCHS,
    callbacks = [early_stopping],
    validation_data=(val_features, val_labels),
    # The class weights go here
    class_weight=class_weight) 
 
Epoch 1/100
90/90 [==============================] - 1s 15ms/step - loss: 2.5149 - tp: 105.0000 - fp: 66.0000 - tn: 238767.0000 - fn: 300.0000 - accuracy: 0.9985 - precision: 0.6140 - recall: 0.2593 - auc: 0.7803 - val_loss: 0.0067 - val_tp: 25.0000 - val_fp: 6.0000 - val_tn: 45476.0000 - val_fn: 62.0000 - val_accuracy: 0.9985 - val_precision: 0.8065 - val_recall: 0.2874 - val_auc: 0.9211
Epoch 2/100
90/90 [==============================] - 1s 6ms/step - loss: 1.2482 - tp: 145.0000 - fp: 124.0000 - tn: 181838.0000 - fn: 169.0000 - accuracy: 0.9984 - precision: 0.5390 - recall: 0.4618 - auc: 0.8560 - val_loss: 0.0062 - val_tp: 68.0000 - val_fp: 12.0000 - val_tn: 45470.0000 - val_fn: 19.0000 - val_accuracy: 0.9993 - val_precision: 0.8500 - val_recall: 0.7816 - val_auc: 0.9408
Epoch 3/100
90/90 [==============================] - 1s 6ms/step - loss: 0.8972 - tp: 177.0000 - fp: 237.0000 - tn: 181725.0000 - fn: 137.0000 - accuracy: 0.9979 - precision: 0.4275 - recall: 0.5637 - auc: 0.8876 - val_loss: 0.0079 - val_tp: 73.0000 - val_fp: 16.0000 - val_tn: 45466.0000 - val_fn: 14.0000 - val_accuracy: 0.9993 - val_precision: 0.8202 - val_recall: 0.8391 - val_auc: 0.9518
Epoch 4/100
90/90 [==============================] - 1s 6ms/step - loss: 0.6983 - tp: 210.0000 - fp: 387.0000 - tn: 181575.0000 - fn: 104.0000 - accuracy: 0.9973 - precision: 0.3518 - recall: 0.6688 - auc: 0.9028 - val_loss: 0.0098 - val_tp: 74.0000 - val_fp: 19.0000 - val_tn: 45463.0000 - val_fn: 13.0000 - val_accuracy: 0.9993 - val_precision: 0.7957 - val_recall: 0.8506 - val_auc: 0.9600
Epoch 5/100
90/90 [==============================] - 1s 6ms/step - loss: 0.6417 - tp: 220.0000 - fp: 583.0000 - tn: 181379.0000 - fn: 94.0000 - accuracy: 0.9963 - precision: 0.2740 - recall: 0.7006 - auc: 0.9084 - val_loss: 0.0119 - val_tp: 74.0000 - val_fp: 25.0000 - val_tn: 45457.0000 - val_fn: 13.0000 - val_accuracy: 0.9992 - val_precision: 0.7475 - val_recall: 0.8506 - val_auc: 0.9777
Epoch 6/100
90/90 [==============================] - 1s 6ms/step - loss: 0.5846 - tp: 232.0000 - fp: 977.0000 - tn: 180985.0000 - fn: 82.0000 - accuracy: 0.9942 - precision: 0.1919 - recall: 0.7389 - auc: 0.9048 - val_loss: 0.0148 - val_tp: 74.0000 - val_fp: 34.0000 - val_tn: 45448.0000 - val_fn: 13.0000 - val_accuracy: 0.9990 - val_precision: 0.6852 - val_recall: 0.8506 - val_auc: 0.9802
Epoch 7/100
90/90 [==============================] - 1s 6ms/step - loss: 0.5404 - tp: 234.0000 - fp: 1464.0000 - tn: 180498.0000 - fn: 80.0000 - accuracy: 0.9915 - precision: 0.1378 - recall: 0.7452 - auc: 0.9190 - val_loss: 0.0183 - val_tp: 74.0000 - val_fp: 50.0000 - val_tn: 45432.0000 - val_fn: 13.0000 - val_accuracy: 0.9986 - val_precision: 0.5968 - val_recall: 0.8506 - val_auc: 0.9823
Epoch 8/100
90/90 [==============================] - 1s 6ms/step - loss: 0.4714 - tp: 241.0000 - fp: 1862.0000 - tn: 180100.0000 - fn: 73.0000 - accuracy: 0.9894 - precision: 0.1146 - recall: 0.7675 - auc: 0.9252 - val_loss: 0.0225 - val_tp: 76.0000 - val_fp: 84.0000 - val_tn: 45398.0000 - val_fn: 11.0000 - val_accuracy: 0.9979 - val_precision: 0.4750 - val_recall: 0.8736 - val_auc: 0.9851
Epoch 9/100
90/90 [==============================] - 1s 6ms/step - loss: 0.4329 - tp: 247.0000 - fp: 2508.0000 - tn: 179454.0000 - fn: 67.0000 - accuracy: 0.9859 - precision: 0.0897 - recall: 0.7866 - auc: 0.9345 - val_loss: 0.0282 - val_tp: 76.0000 - val_fp: 170.0000 - val_tn: 45312.0000 - val_fn: 11.0000 - val_accuracy: 0.9960 - val_precision: 0.3089 - val_recall: 0.8736 - val_auc: 0.9873
Epoch 10/100
90/90 [==============================] - 1s 6ms/step - loss: 0.4467 - tp: 249.0000 - fp: 3175.0000 - tn: 178787.0000 - fn: 65.0000 - accuracy: 0.9822 - precision: 0.0727 - recall: 0.7930 - auc: 0.9210 - val_loss: 0.0341 - val_tp: 78.0000 - val_fp: 282.0000 - val_tn: 45200.0000 - val_fn: 9.0000 - val_accuracy: 0.9936 - val_precision: 0.2167 - val_recall: 0.8966 - val_auc: 0.9881
Epoch 11/100
90/90 [==============================] - 1s 6ms/step - loss: 0.3947 - tp: 260.0000 - fp: 3569.0000 - tn: 178393.0000 - fn: 54.0000 - accuracy: 0.9801 - precision: 0.0679 - recall: 0.8280 - auc: 0.9290 - val_loss: 0.0394 - val_tp: 78.0000 - val_fp: 346.0000 - val_tn: 45136.0000 - val_fn: 9.0000 - val_accuracy: 0.9922 - val_precision: 0.1840 - val_recall: 0.8966 - val_auc: 0.9877
Epoch 12/100
90/90 [==============================] - 1s 6ms/step - loss: 0.3694 - tp: 257.0000 - fp: 4294.0000 - tn: 177668.0000 - fn: 57.0000 - accuracy: 0.9761 - precision: 0.0565 - recall: 0.8185 - auc: 0.9418 - val_loss: 0.0473 - val_tp: 78.0000 - val_fp: 504.0000 - val_tn: 44978.0000 - val_fn: 9.0000 - val_accuracy: 0.9887 - val_precision: 0.1340 - val_recall: 0.8966 - val_auc: 0.9879
Epoch 13/100
90/90 [==============================] - 1s 6ms/step - loss: 0.3479 - tp: 262.0000 - fp: 4886.0000 - tn: 177076.0000 - fn: 52.0000 - accuracy: 0.9729 - precision: 0.0509 - recall: 0.8344 - auc: 0.9403 - val_loss: 0.0539 - val_tp: 78.0000 - val_fp: 586.0000 - val_tn: 44896.0000 - val_fn: 9.0000 - val_accuracy: 0.9869 - val_precision: 0.1175 - val_recall: 0.8966 - val_auc: 0.9881
Epoch 14/100
90/90 [==============================] - 1s 6ms/step - loss: 0.3653 - tp: 263.0000 - fp: 5360.0000 - tn: 176602.0000 - fn: 51.0000 - accuracy: 0.9703 - precision: 0.0468 - recall: 0.8376 - auc: 0.9370 - val_loss: 0.0610 - val_tp: 78.0000 - val_fp: 664.0000 - val_tn: 44818.0000 - val_fn: 9.0000 - val_accuracy: 0.9852 - val_precision: 0.1051 - val_recall: 0.8966 - val_auc: 0.9876
Epoch 15/100
90/90 [==============================] - 1s 6ms/step - loss: 0.3673 - tp: 262.0000 - fp: 5820.0000 - tn: 176142.0000 - fn: 52.0000 - accuracy: 0.9678 - precision: 0.0431 - recall: 0.8344 - auc: 0.9316 - val_loss: 0.0658 - val_tp: 78.0000 - val_fp: 715.0000 - val_tn: 44767.0000 - val_fn: 9.0000 - val_accuracy: 0.9841 - val_precision: 0.0984 - val_recall: 0.8966 - val_auc: 0.9877
Epoch 16/100
90/90 [==============================] - 1s 6ms/step - loss: 0.3228 - tp: 262.0000 - fp: 6230.0000 - tn: 175732.0000 - fn: 52.0000 - accuracy: 0.9655 - precision: 0.0404 - recall: 0.8344 - auc: 0.9445 - val_loss: 0.0716 - val_tp: 79.0000 - val_fp: 805.0000 - val_tn: 44677.0000 - val_fn: 8.0000 - val_accuracy: 0.9822 - val_precision: 0.0894 - val_recall: 0.9080 - val_auc: 0.9877
Epoch 17/100
90/90 [==============================] - 1s 6ms/step - loss: 0.3299 - tp: 268.0000 - fp: 6572.0000 - tn: 175390.0000 - fn: 46.0000 - accuracy: 0.9637 - precision: 0.0392 - recall: 0.8535 - auc: 0.9423 - val_loss: 0.0757 - val_tp: 81.0000 - val_fp: 846.0000 - val_tn: 44636.0000 - val_fn: 6.0000 - val_accuracy: 0.9813 - val_precision: 0.0874 - val_recall: 0.9310 - val_auc: 0.9878
Epoch 18/100
90/90 [==============================] - 1s 6ms/step - loss: 0.2522 - tp: 276.0000 - fp: 6934.0000 - tn: 175028.0000 - fn: 38.0000 - accuracy: 0.9618 - precision: 0.0383 - recall: 0.8790 - auc: 0.9610 - val_loss: 0.0779 - val_tp: 81.0000 - val_fp: 874.0000 - val_tn: 44608.0000 - val_fn: 6.0000 - val_accuracy: 0.9807 - val_precision: 0.0848 - val_recall: 0.9310 - val_auc: 0.9877
Epoch 19/100
90/90 [==============================] - 1s 6ms/step - loss: 0.3607 - tp: 264.0000 - fp: 6790.0000 - tn: 175172.0000 - fn: 50.0000 - accuracy: 0.9625 - precision: 0.0374 - recall: 0.8408 - auc: 0.9303 - val_loss: 0.0781 - val_tp: 81.0000 - val_fp: 865.0000 - val_tn: 44617.0000 - val_fn: 6.0000 - val_accuracy: 0.9809 - val_precision: 0.0856 - val_recall: 0.9310 - val_auc: 0.9879
Epoch 20/100
89/90 [============================>.] - ETA: 0s - loss: 0.2977 - tp: 269.0000 - fp: 6769.0000 - tn: 175189.0000 - fn: 45.0000 - accuracy: 0.9626 - precision: 0.0382 - recall: 0.8567 - auc: 0.9488Restoring model weights from the end of the best epoch.
90/90 [==============================] - 1s 6ms/step - loss: 0.2977 - tp: 269.0000 - fp: 6769.0000 - tn: 175193.0000 - fn: 45.0000 - accuracy: 0.9626 - precision: 0.0382 - recall: 0.8567 - auc: 0.9488 - val_loss: 0.0780 - val_tp: 81.0000 - val_fp: 853.0000 - val_tn: 44629.0000 - val_fn: 6.0000 - val_accuracy: 0.9811 - val_precision: 0.0867 - val_recall: 0.9310 - val_auc: 0.9879
Epoch 00020: early stopping

Проверьте историю тренировок

 plot_metrics(weighted_history)
 

PNG

Оценить метрики

 train_predictions_weighted = weighted_model.predict(train_features, batch_size=BATCH_SIZE)
test_predictions_weighted = weighted_model.predict(test_features, batch_size=BATCH_SIZE)
 
 weighted_results = weighted_model.evaluate(test_features, test_labels,
                                           batch_size=BATCH_SIZE, verbose=0)
for name, value in zip(weighted_model.metrics_names, weighted_results):
  print(name, ': ', value)
print()

plot_cm(test_labels, test_predictions_weighted)
 
loss :  0.03226418048143387
tp :  82.0
fp :  352.0
tn :  56519.0
fn :  9.0
accuracy :  0.993662416934967
precision :  0.18894009292125702
recall :  0.901098906993866
auc :  0.9671803712844849

Legitimate Transactions Detected (True Negatives):  56519
Legitimate Transactions Incorrectly Detected (False Positives):  352
Fraudulent Transactions Missed (False Negatives):  9
Fraudulent Transactions Detected (True Positives):  82
Total Fraudulent Transactions:  91

PNG

Здесь вы можете видеть, что с весами классов точность и точность ниже, потому что есть больше ложных срабатываний, но наоборот, отзыв и AUC выше, потому что модель также нашла больше истинных положительных результатов. Несмотря на более низкую точность, эта модель имеет более высокий уровень отзыва (и выявляет более мошеннические транзакции). Конечно, оба типа ошибок сопряжены со своими издержками (вы не захотите обижать пользователей, отмечая слишком много допустимых транзакций как мошеннических). Тщательно обдумайте компромисс между этими различными типами ошибок для вашего приложения.

Участок РПЦ

 plot_roc("Train Baseline", train_labels, train_predictions_baseline, color=colors[0])
plot_roc("Test Baseline", test_labels, test_predictions_baseline, color=colors[0], linestyle='--')

plot_roc("Train Weighted", train_labels, train_predictions_weighted, color=colors[1])
plot_roc("Test Weighted", test_labels, test_predictions_weighted, color=colors[1], linestyle='--')


plt.legend(loc='lower right')
 
<matplotlib.legend.Legend at 0x7fa54c0729e8>

PNG

оверсемплингом

Пересмотреть класс меньшинства

Связанный подход будет состоять в повторной выборке набора данных путем передискретизации класса меньшинства.

 pos_features = train_features[bool_train_labels]
neg_features = train_features[~bool_train_labels]

pos_labels = train_labels[bool_train_labels]
neg_labels = train_labels[~bool_train_labels]
 

Использование NumPy

Вы можете уравновесить набор данных вручную, выбрав правильное количество случайных индексов из положительных примеров:

 ids = np.arange(len(pos_features))
choices = np.random.choice(ids, len(neg_features))

res_pos_features = pos_features[choices]
res_pos_labels = pos_labels[choices]

res_pos_features.shape
 
(181962, 29)
 resampled_features = np.concatenate([res_pos_features, neg_features], axis=0)
resampled_labels = np.concatenate([res_pos_labels, neg_labels], axis=0)

order = np.arange(len(resampled_labels))
np.random.shuffle(order)
resampled_features = resampled_features[order]
resampled_labels = resampled_labels[order]

resampled_features.shape
 
(363924, 29)

Использование tf.data

Если вы используете tf.data самый простой способ создания сбалансированных примеров - начать с positive и negative наборов данных и объединить их. См. Руководство tf.data для большего количества примеров.

 BUFFER_SIZE = 100000

def make_ds(features, labels):
  ds = tf.data.Dataset.from_tensor_slices((features, labels))#.cache()
  ds = ds.shuffle(BUFFER_SIZE).repeat()
  return ds

pos_ds = make_ds(pos_features, pos_labels)
neg_ds = make_ds(neg_features, neg_labels)
 

Каждый набор данных содержит пары (feature, label) :

 for features, label in pos_ds.take(1):
  print("Features:\n", features.numpy())
  print()
  print("Label: ", label.numpy())
 
Features:
 [ 0.23104754  0.83661044 -0.31875356  1.9796369   1.28403692  0.07389102
  1.03350673 -0.11568355 -1.54396817  0.88004244 -1.66944551 -0.24324391
  0.45900013  0.14583622 -2.06637388  0.42470592 -0.94489216 -0.83112221
 -1.83416278 -0.34138858  0.14130878  0.51019975  0.08224586  0.6642136
 -1.39031637 -0.42194185  0.22525572  0.28277796 -4.86369823]

Label:  1

Объедините их вместе, используя experimental.sample_from_datasets :

 resampled_ds = tf.data.experimental.sample_from_datasets([pos_ds, neg_ds], weights=[0.5, 0.5])
resampled_ds = resampled_ds.batch(BATCH_SIZE).prefetch(2)
 
 for features, label in resampled_ds.take(1):
  print(label.numpy().mean())
 
0.49609375

Чтобы использовать этот набор данных, вам понадобится количество шагов за эпоху.

Определение «эпохи» в этом случае менее понятно. Скажем, это количество пакетов, необходимое для просмотра каждого отрицательного примера один раз:

 resampled_steps_per_epoch = np.ceil(2.0*neg/BATCH_SIZE)
resampled_steps_per_epoch
 
278.0

Тренируйтесь по передискретизированным данным

Теперь попробуйте обучить модель с использованием набора данных с передискретизацией вместо использования весов классов, чтобы увидеть, как эти методы сравниваются.

 resampled_model = make_model()
resampled_model.load_weights(initial_weights)

# Reset the bias to zero, since this dataset is balanced.
output_layer = resampled_model.layers[-1] 
output_layer.bias.assign([0])

val_ds = tf.data.Dataset.from_tensor_slices((val_features, val_labels)).cache()
val_ds = val_ds.batch(BATCH_SIZE).prefetch(2) 

resampled_history = resampled_model.fit(
    resampled_ds,
    epochs=EPOCHS,
    steps_per_epoch=resampled_steps_per_epoch,
    callbacks = [early_stopping],
    validation_data=val_ds)
 
Epoch 1/100
278/278 [==============================] - 6s 23ms/step - loss: 0.4356 - tp: 223484.0000 - fp: 51288.0000 - tn: 290777.0000 - fn: 60757.0000 - accuracy: 0.8211 - precision: 0.8133 - recall: 0.7862 - auc: 0.8933 - val_loss: 0.2172 - val_tp: 79.0000 - val_fp: 1076.0000 - val_tn: 44406.0000 - val_fn: 8.0000 - val_accuracy: 0.9762 - val_precision: 0.0684 - val_recall: 0.9080 - val_auc: 0.9792
Epoch 2/100
278/278 [==============================] - 6s 20ms/step - loss: 0.2177 - tp: 246785.0000 - fp: 12557.0000 - tn: 271871.0000 - fn: 38131.0000 - accuracy: 0.9110 - precision: 0.9516 - recall: 0.8662 - auc: 0.9686 - val_loss: 0.1226 - val_tp: 80.0000 - val_fp: 951.0000 - val_tn: 44531.0000 - val_fn: 7.0000 - val_accuracy: 0.9790 - val_precision: 0.0776 - val_recall: 0.9195 - val_auc: 0.9835
Epoch 3/100
278/278 [==============================] - 6s 21ms/step - loss: 0.1751 - tp: 250631.0000 - fp: 9797.0000 - tn: 275174.0000 - fn: 33742.0000 - accuracy: 0.9235 - precision: 0.9624 - recall: 0.8813 - auc: 0.9810 - val_loss: 0.0940 - val_tp: 82.0000 - val_fp: 966.0000 - val_tn: 44516.0000 - val_fn: 5.0000 - val_accuracy: 0.9787 - val_precision: 0.0782 - val_recall: 0.9425 - val_auc: 0.9836
Epoch 4/100
278/278 [==============================] - 6s 22ms/step - loss: 0.1532 - tp: 254169.0000 - fp: 9171.0000 - tn: 275694.0000 - fn: 30310.0000 - accuracy: 0.9307 - precision: 0.9652 - recall: 0.8935 - auc: 0.9861 - val_loss: 0.0802 - val_tp: 82.0000 - val_fp: 918.0000 - val_tn: 44564.0000 - val_fn: 5.0000 - val_accuracy: 0.9797 - val_precision: 0.0820 - val_recall: 0.9425 - val_auc: 0.9847
Epoch 5/100
278/278 [==============================] - 6s 22ms/step - loss: 0.1372 - tp: 257034.0000 - fp: 9061.0000 - tn: 275758.0000 - fn: 27491.0000 - accuracy: 0.9358 - precision: 0.9659 - recall: 0.9034 - auc: 0.9892 - val_loss: 0.0720 - val_tp: 82.0000 - val_fp: 910.0000 - val_tn: 44572.0000 - val_fn: 5.0000 - val_accuracy: 0.9799 - val_precision: 0.0827 - val_recall: 0.9425 - val_auc: 0.9854
Epoch 6/100
278/278 [==============================] - 6s 22ms/step - loss: 0.1260 - tp: 258997.0000 - fp: 9079.0000 - tn: 275819.0000 - fn: 25449.0000 - accuracy: 0.9394 - precision: 0.9661 - recall: 0.9105 - auc: 0.9911 - val_loss: 0.0666 - val_tp: 81.0000 - val_fp: 915.0000 - val_tn: 44567.0000 - val_fn: 6.0000 - val_accuracy: 0.9798 - val_precision: 0.0813 - val_recall: 0.9310 - val_auc: 0.9856
Epoch 7/100
278/278 [==============================] - 6s 21ms/step - loss: 0.1167 - tp: 261100.0000 - fp: 9112.0000 - tn: 276180.0000 - fn: 22952.0000 - accuracy: 0.9437 - precision: 0.9663 - recall: 0.9192 - auc: 0.9925 - val_loss: 0.0623 - val_tp: 81.0000 - val_fp: 911.0000 - val_tn: 44571.0000 - val_fn: 6.0000 - val_accuracy: 0.9799 - val_precision: 0.0817 - val_recall: 0.9310 - val_auc: 0.9858
Epoch 8/100
278/278 [==============================] - 6s 22ms/step - loss: 0.1082 - tp: 263945.0000 - fp: 9428.0000 - tn: 275276.0000 - fn: 20695.0000 - accuracy: 0.9471 - precision: 0.9655 - recall: 0.9273 - auc: 0.9937 - val_loss: 0.0587 - val_tp: 81.0000 - val_fp: 910.0000 - val_tn: 44572.0000 - val_fn: 6.0000 - val_accuracy: 0.9799 - val_precision: 0.0817 - val_recall: 0.9310 - val_auc: 0.9857
Epoch 9/100
278/278 [==============================] - 6s 21ms/step - loss: 0.1014 - tp: 268108.0000 - fp: 10376.0000 - tn: 274312.0000 - fn: 16548.0000 - accuracy: 0.9527 - precision: 0.9627 - recall: 0.9419 - auc: 0.9944 - val_loss: 0.0543 - val_tp: 80.0000 - val_fp: 873.0000 - val_tn: 44609.0000 - val_fn: 7.0000 - val_accuracy: 0.9807 - val_precision: 0.0839 - val_recall: 0.9195 - val_auc: 0.9857
Epoch 10/100
278/278 [==============================] - 6s 22ms/step - loss: 0.0951 - tp: 277520.0000 - fp: 12692.0000 - tn: 271795.0000 - fn: 7337.0000 - accuracy: 0.9648 - precision: 0.9563 - recall: 0.9742 - auc: 0.9950 - val_loss: 0.0495 - val_tp: 79.0000 - val_fp: 829.0000 - val_tn: 44653.0000 - val_fn: 8.0000 - val_accuracy: 0.9816 - val_precision: 0.0870 - val_recall: 0.9080 - val_auc: 0.9855
Epoch 11/100
278/278 [==============================] - 6s 21ms/step - loss: 0.0895 - tp: 278865.0000 - fp: 12938.0000 - tn: 271719.0000 - fn: 5822.0000 - accuracy: 0.9670 - precision: 0.9557 - recall: 0.9795 - auc: 0.9955 - val_loss: 0.0450 - val_tp: 79.0000 - val_fp: 789.0000 - val_tn: 44693.0000 - val_fn: 8.0000 - val_accuracy: 0.9825 - val_precision: 0.0910 - val_recall: 0.9080 - val_auc: 0.9859
Epoch 12/100
278/278 [==============================] - 6s 21ms/step - loss: 0.0842 - tp: 279845.0000 - fp: 13187.0000 - tn: 272121.0000 - fn: 4191.0000 - accuracy: 0.9695 - precision: 0.9550 - recall: 0.9852 - auc: 0.9960 - val_loss: 0.0410 - val_tp: 79.0000 - val_fp: 733.0000 - val_tn: 44749.0000 - val_fn: 8.0000 - val_accuracy: 0.9837 - val_precision: 0.0973 - val_recall: 0.9080 - val_auc: 0.9813
Epoch 13/100
278/278 [==============================] - 6s 22ms/step - loss: 0.0792 - tp: 281765.0000 - fp: 12977.0000 - tn: 271393.0000 - fn: 3209.0000 - accuracy: 0.9716 - precision: 0.9560 - recall: 0.9887 - auc: 0.9963 - val_loss: 0.0389 - val_tp: 79.0000 - val_fp: 721.0000 - val_tn: 44761.0000 - val_fn: 8.0000 - val_accuracy: 0.9840 - val_precision: 0.0988 - val_recall: 0.9080 - val_auc: 0.9814
Epoch 14/100
278/278 [==============================] - 6s 21ms/step - loss: 0.0754 - tp: 281962.0000 - fp: 13026.0000 - tn: 272154.0000 - fn: 2202.0000 - accuracy: 0.9733 - precision: 0.9558 - recall: 0.9923 - auc: 0.9966 - val_loss: 0.0348 - val_tp: 79.0000 - val_fp: 646.0000 - val_tn: 44836.0000 - val_fn: 8.0000 - val_accuracy: 0.9856 - val_precision: 0.1090 - val_recall: 0.9080 - val_auc: 0.9763
Epoch 15/100
278/278 [==============================] - 6s 23ms/step - loss: 0.0722 - tp: 283858.0000 - fp: 12932.0000 - tn: 271419.0000 - fn: 1135.0000 - accuracy: 0.9753 - precision: 0.9564 - recall: 0.9960 - auc: 0.9967 - val_loss: 0.0331 - val_tp: 79.0000 - val_fp: 640.0000 - val_tn: 44842.0000 - val_fn: 8.0000 - val_accuracy: 0.9858 - val_precision: 0.1099 - val_recall: 0.9080 - val_auc: 0.9714
Epoch 16/100
278/278 [==============================] - 6s 22ms/step - loss: 0.0689 - tp: 283059.0000 - fp: 12757.0000 - tn: 273004.0000 - fn: 524.0000 - accuracy: 0.9767 - precision: 0.9569 - recall: 0.9982 - auc: 0.9970 - val_loss: 0.0308 - val_tp: 79.0000 - val_fp: 583.0000 - val_tn: 44899.0000 - val_fn: 8.0000 - val_accuracy: 0.9870 - val_precision: 0.1193 - val_recall: 0.9080 - val_auc: 0.9667
Epoch 17/100
278/278 [==============================] - 6s 23ms/step - loss: 0.0661 - tp: 283879.0000 - fp: 12340.0000 - tn: 272779.0000 - fn: 346.0000 - accuracy: 0.9777 - precision: 0.9583 - recall: 0.9988 - auc: 0.9971 - val_loss: 0.0289 - val_tp: 79.0000 - val_fp: 542.0000 - val_tn: 44940.0000 - val_fn: 8.0000 - val_accuracy: 0.9879 - val_precision: 0.1272 - val_recall: 0.9080 - val_auc: 0.9618
Epoch 18/100
278/278 [==============================] - 6s 22ms/step - loss: 0.0635 - tp: 284858.0000 - fp: 12157.0000 - tn: 272120.0000 - fn: 209.0000 - accuracy: 0.9783 - precision: 0.9591 - recall: 0.9993 - auc: 0.9973 - val_loss: 0.0277 - val_tp: 79.0000 - val_fp: 511.0000 - val_tn: 44971.0000 - val_fn: 8.0000 - val_accuracy: 0.9886 - val_precision: 0.1339 - val_recall: 0.9080 - val_auc: 0.9621
Epoch 19/100
278/278 [==============================] - 6s 23ms/step - loss: 0.0620 - tp: 284459.0000 - fp: 11978.0000 - tn: 272718.0000 - fn: 189.0000 - accuracy: 0.9786 - precision: 0.9596 - recall: 0.9993 - auc: 0.9973 - val_loss: 0.0261 - val_tp: 79.0000 - val_fp: 478.0000 - val_tn: 45004.0000 - val_fn: 8.0000 - val_accuracy: 0.9893 - val_precision: 0.1418 - val_recall: 0.9080 - val_auc: 0.9624
Epoch 20/100
278/278 [==============================] - 6s 23ms/step - loss: 0.0600 - tp: 284950.0000 - fp: 11793.0000 - tn: 272572.0000 - fn: 29.0000 - accuracy: 0.9792 - precision: 0.9603 - recall: 0.9999 - auc: 0.9974 - val_loss: 0.0252 - val_tp: 79.0000 - val_fp: 463.0000 - val_tn: 45019.0000 - val_fn: 8.0000 - val_accuracy: 0.9897 - val_precision: 0.1458 - val_recall: 0.9080 - val_auc: 0.9626
Epoch 21/100
276/278 [============================>.] - ETA: 0s - loss: 0.0581 - tp: 282210.0000 - fp: 11270.0000 - tn: 271768.0000 - fn: 0.0000e+00 - accuracy: 0.9801 - precision: 0.9616 - recall: 1.0000 - auc: 0.9975Restoring model weights from the end of the best epoch.
278/278 [==============================] - 6s 22ms/step - loss: 0.0581 - tp: 284274.0000 - fp: 11360.0000 - tn: 273710.0000 - fn: 0.0000e+00 - accuracy: 0.9800 - precision: 0.9616 - recall: 1.0000 - auc: 0.9975 - val_loss: 0.0241 - val_tp: 79.0000 - val_fp: 444.0000 - val_tn: 45038.0000 - val_fn: 8.0000 - val_accuracy: 0.9901 - val_precision: 0.1511 - val_recall: 0.9080 - val_auc: 0.9628
Epoch 00021: early stopping

Если бы в процессе обучения учитывался весь набор данных при каждом обновлении градиента, эта избыточная выборка была бы в основном идентична весам классов.

Но при обучении модели по партиям, как вы делали здесь, данные с избыточной дискретизацией обеспечивают более плавный сигнал градиента: вместо того, чтобы каждый положительный пример отображался в одной партии с большим весом, они показывались во многих разных партиях каждый раз с небольшой вес

Этот более плавный градиентный сигнал облегчает обучение модели.

Проверьте историю тренировок

Обратите внимание, что распределение метрик здесь будет отличаться, потому что данные обучения имеют распределение, совершенно отличное от данных проверки и тестирования.

 plot_metrics(resampled_history )
 

PNG

Re-поезд

Поскольку тренировка на сбалансированных данных проще, описанная выше процедура обучения может быстро пройти.

Так что разбейте эпохи, чтобы дать callbacks.EarlyStopping более точный контроль, когда нужно прекратить тренировку.

 resampled_model = make_model()
resampled_model.load_weights(initial_weights)

# Reset the bias to zero, since this dataset is balanced.
output_layer = resampled_model.layers[-1] 
output_layer.bias.assign([0])

resampled_history = resampled_model.fit(
    resampled_ds,
    # These are not real epochs
    steps_per_epoch = 20,
    epochs=10*EPOCHS,
    callbacks = [early_stopping],
    validation_data=(val_ds))
 
Epoch 1/1000
20/20 [==============================] - 1s 60ms/step - loss: 1.0656 - tp: 9507.0000 - fp: 7370.0000 - tn: 58667.0000 - fn: 10985.0000 - accuracy: 0.7879 - precision: 0.5633 - recall: 0.4639 - auc: 0.8255 - val_loss: 0.5792 - val_tp: 66.0000 - val_fp: 13452.0000 - val_tn: 32030.0000 - val_fn: 21.0000 - val_accuracy: 0.7043 - val_precision: 0.0049 - val_recall: 0.7586 - val_auc: 0.7866
Epoch 2/1000
20/20 [==============================] - 1s 26ms/step - loss: 0.6996 - tp: 13383.0000 - fp: 7208.0000 - tn: 13397.0000 - fn: 6972.0000 - accuracy: 0.6538 - precision: 0.6499 - recall: 0.6575 - auc: 0.7027 - val_loss: 0.5702 - val_tp: 76.0000 - val_fp: 12408.0000 - val_tn: 33074.0000 - val_fn: 11.0000 - val_accuracy: 0.7275 - val_precision: 0.0061 - val_recall: 0.8736 - val_auc: 0.9076
Epoch 3/1000
20/20 [==============================] - 1s 28ms/step - loss: 0.5532 - tp: 15127.0000 - fp: 6665.0000 - tn: 14055.0000 - fn: 5113.0000 - accuracy: 0.7125 - precision: 0.6942 - recall: 0.7474 - auc: 0.7952 - val_loss: 0.5335 - val_tp: 79.0000 - val_fp: 9006.0000 - val_tn: 36476.0000 - val_fn: 8.0000 - val_accuracy: 0.8022 - val_precision: 0.0087 - val_recall: 0.9080 - val_auc: 0.9408
Epoch 4/1000
20/20 [==============================] - 1s 28ms/step - loss: 0.4738 - tp: 16061.0000 - fp: 5669.0000 - tn: 14890.0000 - fn: 4340.0000 - accuracy: 0.7556 - precision: 0.7391 - recall: 0.7873 - auc: 0.8495 - val_loss: 0.4883 - val_tp: 78.0000 - val_fp: 5756.0000 - val_tn: 39726.0000 - val_fn: 9.0000 - val_accuracy: 0.8735 - val_precision: 0.0134 - val_recall: 0.8966 - val_auc: 0.9489
Epoch 5/1000
20/20 [==============================] - 0s 23ms/step - loss: 0.4266 - tp: 16612.0000 - fp: 4719.0000 - tn: 15715.0000 - fn: 3914.0000 - accuracy: 0.7892 - precision: 0.7788 - recall: 0.8093 - auc: 0.8786 - val_loss: 0.4435 - val_tp: 78.0000 - val_fp: 3758.0000 - val_tn: 41724.0000 - val_fn: 9.0000 - val_accuracy: 0.9173 - val_precision: 0.0203 - val_recall: 0.8966 - val_auc: 0.9539
Epoch 6/1000
20/20 [==============================] - 0s 23ms/step - loss: 0.3908 - tp: 16911.0000 - fp: 3861.0000 - tn: 16514.0000 - fn: 3674.0000 - accuracy: 0.8160 - precision: 0.8141 - recall: 0.8215 - auc: 0.8976 - val_loss: 0.4032 - val_tp: 79.0000 - val_fp: 2770.0000 - val_tn: 42712.0000 - val_fn: 8.0000 - val_accuracy: 0.9390 - val_precision: 0.0277 - val_recall: 0.9080 - val_auc: 0.9590
Epoch 7/1000
20/20 [==============================] - 0s 25ms/step - loss: 0.3664 - tp: 17049.0000 - fp: 3209.0000 - tn: 17179.0000 - fn: 3523.0000 - accuracy: 0.8356 - precision: 0.8416 - recall: 0.8287 - auc: 0.9108 - val_loss: 0.3682 - val_tp: 79.0000 - val_fp: 2119.0000 - val_tn: 43363.0000 - val_fn: 8.0000 - val_accuracy: 0.9533 - val_precision: 0.0359 - val_recall: 0.9080 - val_auc: 0.9634
Epoch 8/1000
20/20 [==============================] - 0s 24ms/step - loss: 0.3467 - tp: 17100.0000 - fp: 2699.0000 - tn: 17686.0000 - fn: 3475.0000 - accuracy: 0.8493 - precision: 0.8637 - recall: 0.8311 - auc: 0.9193 - val_loss: 0.3373 - val_tp: 79.0000 - val_fp: 1753.0000 - val_tn: 43729.0000 - val_fn: 8.0000 - val_accuracy: 0.9614 - val_precision: 0.0431 - val_recall: 0.9080 - val_auc: 0.9675
Epoch 9/1000
20/20 [==============================] - 1s 29ms/step - loss: 0.3285 - tp: 17043.0000 - fp: 2345.0000 - tn: 18228.0000 - fn: 3344.0000 - accuracy: 0.8611 - precision: 0.8790 - recall: 0.8360 - auc: 0.9271 - val_loss: 0.3104 - val_tp: 79.0000 - val_fp: 1495.0000 - val_tn: 43987.0000 - val_fn: 8.0000 - val_accuracy: 0.9670 - val_precision: 0.0502 - val_recall: 0.9080 - val_auc: 0.9702
Epoch 10/1000
20/20 [==============================] - 1s 27ms/step - loss: 0.3094 - tp: 17322.0000 - fp: 2012.0000 - tn: 18405.0000 - fn: 3221.0000 - accuracy: 0.8722 - precision: 0.8959 - recall: 0.8432 - auc: 0.9361 - val_loss: 0.2865 - val_tp: 79.0000 - val_fp: 1332.0000 - val_tn: 44150.0000 - val_fn: 8.0000 - val_accuracy: 0.9706 - val_precision: 0.0560 - val_recall: 0.9080 - val_auc: 0.9721
Epoch 11/1000
20/20 [==============================] - 1s 29ms/step - loss: 0.2962 - tp: 17184.0000 - fp: 1757.0000 - tn: 18853.0000 - fn: 3166.0000 - accuracy: 0.8798 - precision: 0.9072 - recall: 0.8444 - auc: 0.9406 - val_loss: 0.2654 - val_tp: 79.0000 - val_fp: 1228.0000 - val_tn: 44254.0000 - val_fn: 8.0000 - val_accuracy: 0.9729 - val_precision: 0.0604 - val_recall: 0.9080 - val_auc: 0.9739
Epoch 12/1000
20/20 [==============================] - 1s 30ms/step - loss: 0.2835 - tp: 17373.0000 - fp: 1543.0000 - tn: 18909.0000 - fn: 3135.0000 - accuracy: 0.8858 - precision: 0.9184 - recall: 0.8471 - auc: 0.9458 - val_loss: 0.2469 - val_tp: 79.0000 - val_fp: 1155.0000 - val_tn: 44327.0000 - val_fn: 8.0000 - val_accuracy: 0.9745 - val_precision: 0.0640 - val_recall: 0.9080 - val_auc: 0.9759
Epoch 13/1000
20/20 [==============================] - 1s 28ms/step - loss: 0.2710 - tp: 17386.0000 - fp: 1395.0000 - tn: 19124.0000 - fn: 3055.0000 - accuracy: 0.8914 - precision: 0.9257 - recall: 0.8505 - auc: 0.9502 - val_loss: 0.2302 - val_tp: 79.0000 - val_fp: 1092.0000 - val_tn: 44390.0000 - val_fn: 8.0000 - val_accuracy: 0.9759 - val_precision: 0.0675 - val_recall: 0.9080 - val_auc: 0.9782
Epoch 14/1000
20/20 [==============================] - 0s 24ms/step - loss: 0.2618 - tp: 17336.0000 - fp: 1343.0000 - tn: 19296.0000 - fn: 2985.0000 - accuracy: 0.8943 - precision: 0.9281 - recall: 0.8531 - auc: 0.9541 - val_loss: 0.2156 - val_tp: 79.0000 - val_fp: 1053.0000 - val_tn: 44429.0000 - val_fn: 8.0000 - val_accuracy: 0.9767 - val_precision: 0.0698 - val_recall: 0.9080 - val_auc: 0.9797
Epoch 15/1000
20/20 [==============================] - 0s 24ms/step - loss: 0.2529 - tp: 17466.0000 - fp: 1154.0000 - tn: 19366.0000 - fn: 2974.0000 - accuracy: 0.8992 - precision: 0.9380 - recall: 0.8545 - auc: 0.9574 - val_loss: 0.2026 - val_tp: 79.0000 - val_fp: 1029.0000 - val_tn: 44453.0000 - val_fn: 8.0000 - val_accuracy: 0.9772 - val_precision: 0.0713 - val_recall: 0.9080 - val_auc: 0.9806
Epoch 16/1000
20/20 [==============================] - 0s 24ms/step - loss: 0.2456 - tp: 17579.0000 - fp: 1075.0000 - tn: 19322.0000 - fn: 2984.0000 - accuracy: 0.9009 - precision: 0.9424 - recall: 0.8549 - auc: 0.9590 - val_loss: 0.1923 - val_tp: 79.0000 - val_fp: 1017.0000 - val_tn: 44465.0000 - val_fn: 8.0000 - val_accuracy: 0.9775 - val_precision: 0.0721 - val_recall: 0.9080 - val_auc: 0.9813
Epoch 17/1000
20/20 [==============================] - 0s 25ms/step - loss: 0.2382 - tp: 17573.0000 - fp: 982.0000 - tn: 19540.0000 - fn: 2865.0000 - accuracy: 0.9061 - precision: 0.9471 - recall: 0.8598 - auc: 0.9620 - val_loss: 0.1828 - val_tp: 79.0000 - val_fp: 1005.0000 - val_tn: 44477.0000 - val_fn: 8.0000 - val_accuracy: 0.9778 - val_precision: 0.0729 - val_recall: 0.9080 - val_auc: 0.9819
Epoch 18/1000
20/20 [==============================] - 1s 28ms/step - loss: 0.2307 - tp: 17711.0000 - fp: 966.0000 - tn: 19448.0000 - fn: 2835.0000 - accuracy: 0.9072 - precision: 0.9483 - recall: 0.8620 - auc: 0.9644 - val_loss: 0.1736 - val_tp: 80.0000 - val_fp: 990.0000 - val_tn: 44492.0000 - val_fn: 7.0000 - val_accuracy: 0.9781 - val_precision: 0.0748 - val_recall: 0.9195 - val_auc: 0.9825
Epoch 19/1000
20/20 [==============================] - 1s 28ms/step - loss: 0.2280 - tp: 17732.0000 - fp: 952.0000 - tn: 19442.0000 - fn: 2834.0000 - accuracy: 0.9076 - precision: 0.9490 - recall: 0.8622 - auc: 0.9653 - val_loss: 0.1660 - val_tp: 80.0000 - val_fp: 974.0000 - val_tn: 44508.0000 - val_fn: 7.0000 - val_accuracy: 0.9785 - val_precision: 0.0759 - val_recall: 0.9195 - val_auc: 0.9826
Epoch 20/1000
20/20 [==============================] - 1s 28ms/step - loss: 0.2224 - tp: 17725.0000 - fp: 939.0000 - tn: 19538.0000 - fn: 2758.0000 - accuracy: 0.9097 - precision: 0.9497 - recall: 0.8654 - auc: 0.9667 - val_loss: 0.1591 - val_tp: 80.0000 - val_fp: 962.0000 - val_tn: 44520.0000 - val_fn: 7.0000 - val_accuracy: 0.9787 - val_precision: 0.0768 - val_recall: 0.9195 - val_auc: 0.9831
Epoch 21/1000
20/20 [==============================] - 1s 29ms/step - loss: 0.2168 - tp: 17757.0000 - fp: 826.0000 - tn: 19618.0000 - fn: 2759.0000 - accuracy: 0.9125 - precision: 0.9556 - recall: 0.8655 - auc: 0.9689 - val_loss: 0.1531 - val_tp: 80.0000 - val_fp: 967.0000 - val_tn: 44515.0000 - val_fn: 7.0000 - val_accuracy: 0.9786 - val_precision: 0.0764 - val_recall: 0.9195 - val_auc: 0.9831
Epoch 22/1000
20/20 [==============================] - 1s 28ms/step - loss: 0.2112 - tp: 17833.0000 - fp: 883.0000 - tn: 19522.0000 - fn: 2722.0000 - accuracy: 0.9120 - precision: 0.9528 - recall: 0.8676 - auc: 0.9703 - val_loss: 0.1479 - val_tp: 80.0000 - val_fp: 975.0000 - val_tn: 44507.0000 - val_fn: 7.0000 - val_accuracy: 0.9785 - val_precision: 0.0758 - val_recall: 0.9195 - val_auc: 0.9832
Epoch 23/1000
20/20 [==============================] - 0s 24ms/step - loss: 0.2058 - tp: 17865.0000 - fp: 835.0000 - tn: 19580.0000 - fn: 2680.0000 - accuracy: 0.9142 - precision: 0.9553 - recall: 0.8696 - auc: 0.9723 - val_loss: 0.1427 - val_tp: 80.0000 - val_fp: 977.0000 - val_tn: 44505.0000 - val_fn: 7.0000 - val_accuracy: 0.9784 - val_precision: 0.0757 - val_recall: 0.9195 - val_auc: 0.9834
Epoch 24/1000
20/20 [==============================] - 0s 25ms/step - loss: 0.2053 - tp: 17856.0000 - fp: 802.0000 - tn: 19599.0000 - fn: 2703.0000 - accuracy: 0.9144 - precision: 0.9570 - recall: 0.8685 - auc: 0.9727 - val_loss: 0.1375 - val_tp: 80.0000 - val_fp: 969.0000 - val_tn: 44513.0000 - val_fn: 7.0000 - val_accuracy: 0.9786 - val_precision: 0.0763 - val_recall: 0.9195 - val_auc: 0.9833
Epoch 25/1000
20/20 [==============================] - 0s 25ms/step - loss: 0.2004 - tp: 17854.0000 - fp: 809.0000 - tn: 19690.0000 - fn: 2607.0000 - accuracy: 0.9166 - precision: 0.9567 - recall: 0.8726 - auc: 0.9740 - val_loss: 0.1331 - val_tp: 80.0000 - val_fp: 976.0000 - val_tn: 44506.0000 - val_fn: 7.0000 - val_accuracy: 0.9784 - val_precision: 0.0758 - val_recall: 0.9195 - val_auc: 0.9837
Epoch 26/1000
20/20 [==============================] - 0s 24ms/step - loss: 0.1991 - tp: 17857.0000 - fp: 793.0000 - tn: 19690.0000 - fn: 2620.0000 - accuracy: 0.9167 - precision: 0.9575 - recall: 0.8721 - auc: 0.9747 - val_loss: 0.1291 - val_tp: 80.0000 - val_fp: 968.0000 - val_tn: 44514.0000 - val_fn: 7.0000 - val_accuracy: 0.9786 - val_precision: 0.0763 - val_recall: 0.9195 - val_auc: 0.9836
Epoch 27/1000
20/20 [==============================] - 1s 40ms/step - loss: 0.1929 - tp: 17836.0000 - fp: 750.0000 - tn: 19833.0000 - fn: 2541.0000 - accuracy: 0.9197 - precision: 0.9596 - recall: 0.8753 - auc: 0.9760 - val_loss: 0.1252 - val_tp: 80.0000 - val_fp: 960.0000 - val_tn: 44522.0000 - val_fn: 7.0000 - val_accuracy: 0.9788 - val_precision: 0.0769 - val_recall: 0.9195 - val_auc: 0.9839
Epoch 28/1000
20/20 [==============================] - 1s 29ms/step - loss: 0.1935 - tp: 17776.0000 - fp: 753.0000 - tn: 19827.0000 - fn: 2604.0000 - accuracy: 0.9180 - precision: 0.9594 - recall: 0.8722 - auc: 0.9763 - val_loss: 0.1215 - val_tp: 80.0000 - val_fp: 946.0000 - val_tn: 44536.0000 - val_fn: 7.0000 - val_accuracy: 0.9791 - val_precision: 0.0780 - val_recall: 0.9195 - val_auc: 0.9836
Epoch 29/1000
20/20 [==============================] - 1s 32ms/step - loss: 0.1892 - tp: 17877.0000 - fp: 746.0000 - tn: 19791.0000 - fn: 2546.0000 - accuracy: 0.9196 - precision: 0.9599 - recall: 0.8753 - auc: 0.9773 - val_loss: 0.1183 - val_tp: 80.0000 - val_fp: 944.0000 - val_tn: 44538.0000 - val_fn: 7.0000 - val_accuracy: 0.9791 - val_precision: 0.0781 - val_recall: 0.9195 - val_auc: 0.9840
Epoch 30/1000
20/20 [==============================] - 1s 30ms/step - loss: 0.1855 - tp: 18053.0000 - fp: 746.0000 - tn: 19673.0000 - fn: 2488.0000 - accuracy: 0.9210 - precision: 0.9603 - recall: 0.8789 - auc: 0.9779 - val_loss: 0.1157 - val_tp: 80.0000 - val_fp: 949.0000 - val_tn: 44533.0000 - val_fn: 7.0000 - val_accuracy: 0.9790 - val_precision: 0.0777 - val_recall: 0.9195 - val_auc: 0.9835
Epoch 31/1000
20/20 [==============================] - 1s 27ms/step - loss: 0.1843 - tp: 18042.0000 - fp: 723.0000 - tn: 19656.0000 - fn: 2539.0000 - accuracy: 0.9204 - precision: 0.9615 - recall: 0.8766 - auc: 0.9783 - val_loss: 0.1137 - val_tp: 80.0000 - val_fp: 958.0000 - val_tn: 44524.0000 - val_fn: 7.0000 - val_accuracy: 0.9788 - val_precision: 0.0771 - val_recall: 0.9195 - val_auc: 0.9836
Epoch 32/1000
20/20 [==============================] - 1s 26ms/step - loss: 0.1831 - tp: 17974.0000 - fp: 743.0000 - tn: 19741.0000 - fn: 2502.0000 - accuracy: 0.9208 - precision: 0.9603 - recall: 0.8778 - auc: 0.9789 - val_loss: 0.1112 - val_tp: 80.0000 - val_fp: 958.0000 - val_tn: 44524.0000 - val_fn: 7.0000 - val_accuracy: 0.9788 - val_precision: 0.0771 - val_recall: 0.9195 - val_auc: 0.9840
Epoch 33/1000
20/20 [==============================] - 1s 26ms/step - loss: 0.1805 - tp: 18172.0000 - fp: 775.0000 - tn: 19591.0000 - fn: 2422.0000 - accuracy: 0.9219 - precision: 0.9591 - recall: 0.8824 - auc: 0.9796 - val_loss: 0.1088 - val_tp: 81.0000 - val_fp: 956.0000 - val_tn: 44526.0000 - val_fn: 6.0000 - val_accuracy: 0.9789 - val_precision: 0.0781 - val_recall: 0.9310 - val_auc: 0.9841
Epoch 34/1000
20/20 [==============================] - 0s 24ms/step - loss: 0.1749 - tp: 18125.0000 - fp: 715.0000 - tn: 19698.0000 - fn: 2422.0000 - accuracy: 0.9234 - precision: 0.9620 - recall: 0.8821 - auc: 0.9812 - val_loss: 0.1068 - val_tp: 81.0000 - val_fp: 964.0000 - val_tn: 44518.0000 - val_fn: 6.0000 - val_accuracy: 0.9787 - val_precision: 0.0775 - val_recall: 0.9310 - val_auc: 0.9836
Epoch 35/1000
20/20 [==============================] - 0s 23ms/step - loss: 0.1769 - tp: 18135.0000 - fp: 715.0000 - tn: 19694.0000 - fn: 2416.0000 - accuracy: 0.9236 - precision: 0.9621 - recall: 0.8824 - auc: 0.9809 - val_loss: 0.1048 - val_tp: 81.0000 - val_fp: 978.0000 - val_tn: 44504.0000 - val_fn: 6.0000 - val_accuracy: 0.9784 - val_precision: 0.0765 - val_recall: 0.9310 - val_auc: 0.9838
Epoch 36/1000
20/20 [==============================] - 1s 30ms/step - loss: 0.1739 - tp: 18006.0000 - fp: 704.0000 - tn: 19827.0000 - fn: 2423.0000 - accuracy: 0.9237 - precision: 0.9624 - recall: 0.8814 - auc: 0.9814 - val_loss: 0.1029 - val_tp: 81.0000 - val_fp: 986.0000 - val_tn: 44496.0000 - val_fn: 6.0000 - val_accuracy: 0.9782 - val_precision: 0.0759 - val_recall: 0.9310 - val_auc: 0.9839
Epoch 37/1000
20/20 [==============================] - 1s 27ms/step - loss: 0.1687 - tp: 18002.0000 - fp: 660.0000 - tn: 19879.0000 - fn: 2419.0000 - accuracy: 0.9248 - precision: 0.9646 - recall: 0.8815 - auc: 0.9826 - val_loss: 0.1011 - val_tp: 81.0000 - val_fp: 984.0000 - val_tn: 44498.0000 - val_fn: 6.0000 - val_accuracy: 0.9783 - val_precision: 0.0761 - val_recall: 0.9310 - val_auc: 0.9841
Epoch 38/1000
20/20 [==============================] - 1s 28ms/step - loss: 0.1699 - tp: 17932.0000 - fp: 677.0000 - tn: 19986.0000 - fn: 2365.0000 - accuracy: 0.9257 - precision: 0.9636 - recall: 0.8835 - auc: 0.9825 - val_loss: 0.0995 - val_tp: 82.0000 - val_fp: 979.0000 - val_tn: 44503.0000 - val_fn: 5.0000 - val_accuracy: 0.9784 - val_precision: 0.0773 - val_recall: 0.9425 - val_auc: 0.9842
Epoch 39/1000
20/20 [==============================] - 1s 30ms/step - loss: 0.1676 - tp: 18086.0000 - fp: 736.0000 - tn: 19780.0000 - fn: 2358.0000 - accuracy: 0.9245 - precision: 0.9609 - recall: 0.8847 - auc: 0.9826 - val_loss: 0.0980 - val_tp: 82.0000 - val_fp: 975.0000 - val_tn: 44507.0000 - val_fn: 5.0000 - val_accuracy: 0.9785 - val_precision: 0.0776 - val_recall: 0.9425 - val_auc: 0.9844
Epoch 40/1000
20/20 [==============================] - 1s 27ms/step - loss: 0.1670 - tp: 18066.0000 - fp: 685.0000 - tn: 19868.0000 - fn: 2341.0000 - accuracy: 0.9261 - precision: 0.9635 - recall: 0.8853 - auc: 0.9832 - val_loss: 0.0964 - val_tp: 82.0000 - val_fp: 965.0000 - val_tn: 44517.0000 - val_fn: 5.0000 - val_accuracy: 0.9787 - val_precision: 0.0783 - val_recall: 0.9425 - val_auc: 0.9845
Epoch 41/1000
20/20 [==============================] - 0s 23ms/step - loss: 0.1640 - tp: 17950.0000 - fp: 645.0000 - tn: 19995.0000 - fn: 2370.0000 - accuracy: 0.9264 - precision: 0.9653 - recall: 0.8834 - auc: 0.9839 - val_loss: 0.0950 - val_tp: 82.0000 - val_fp: 956.0000 - val_tn: 44526.0000 - val_fn: 5.0000 - val_accuracy: 0.9789 - val_precision: 0.0790 - val_recall: 0.9425 - val_auc: 0.9835
Epoch 42/1000
20/20 [==============================] - 0s 25ms/step - loss: 0.1641 - tp: 18083.0000 - fp: 665.0000 - tn: 19842.0000 - fn: 2370.0000 - accuracy: 0.9259 - precision: 0.9645 - recall: 0.8841 - auc: 0.9839 - val_loss: 0.0938 - val_tp: 82.0000 - val_fp: 949.0000 - val_tn: 44533.0000 - val_fn: 5.0000 - val_accuracy: 0.9791 - val_precision: 0.0795 - val_recall: 0.9425 - val_auc: 0.9837
Epoch 43/1000
20/20 [==============================] - 0s 23ms/step - loss: 0.1600 - tp: 18012.0000 - fp: 684.0000 - tn: 19970.0000 - fn: 2294.0000 - accuracy: 0.9273 - precision: 0.9634 - recall: 0.8870 - auc: 0.9845 - val_loss: 0.0925 - val_tp: 82.0000 - val_fp: 949.0000 - val_tn: 44533.0000 - val_fn: 5.0000 - val_accuracy: 0.9791 - val_precision: 0.0795 - val_recall: 0.9425 - val_auc: 0.9837
Epoch 44/1000
20/20 [==============================] - 1s 27ms/step - loss: 0.1597 - tp: 18346.0000 - fp: 657.0000 - tn: 19657.0000 - fn: 2300.0000 - accuracy: 0.9278 - precision: 0.9654 - recall: 0.8886 - auc: 0.9847 - val_loss: 0.0919 - val_tp: 82.0000 - val_fp: 955.0000 - val_tn: 44527.0000 - val_fn: 5.0000 - val_accuracy: 0.9789 - val_precision: 0.0791 - val_recall: 0.9425 - val_auc: 0.9838
Epoch 45/1000
20/20 [==============================] - 1s 28ms/step - loss: 0.1607 - tp: 18109.0000 - fp: 726.0000 - tn: 19836.0000 - fn: 2289.0000 - accuracy: 0.9264 - precision: 0.9615 - recall: 0.8878 - auc: 0.9846 - val_loss: 0.0908 - val_tp: 82.0000 - val_fp: 948.0000 - val_tn: 44534.0000 - val_fn: 5.0000 - val_accuracy: 0.9791 - val_precision: 0.0796 - val_recall: 0.9425 - val_auc: 0.9839
Epoch 46/1000
20/20 [==============================] - 1s 27ms/step - loss: 0.1581 - tp: 18192.0000 - fp: 650.0000 - tn: 19833.0000 - fn: 2285.0000 - accuracy: 0.9283 - precision: 0.9655 - recall: 0.8884 - auc: 0.9849 - val_loss: 0.0902 - val_tp: 82.0000 - val_fp: 955.0000 - val_tn: 44527.0000 - val_fn: 5.0000 - val_accuracy: 0.9789 - val_precision: 0.0791 - val_recall: 0.9425 - val_auc: 0.9839
Epoch 47/1000
20/20 [==============================] - 1s 28ms/step - loss: 0.1579 - tp: 18301.0000 - fp: 676.0000 - tn: 19760.0000 - fn: 2223.0000 - accuracy: 0.9292 - precision: 0.9644 - recall: 0.8917 - auc: 0.9853 - val_loss: 0.0892 - val_tp: 82.0000 - val_fp: 956.0000 - val_tn: 44526.0000 - val_fn: 5.0000 - val_accuracy: 0.9789 - val_precision: 0.0790 - val_recall: 0.9425 - val_auc: 0.9840
Epoch 48/1000
20/20 [==============================] - 1s 28ms/step - loss: 0.1503 - tp: 18172.0000 - fp: 593.0000 - tn: 19959.0000 - fn: 2236.0000 - accuracy: 0.9309 - precision: 0.9684 - recall: 0.8904 - auc: 0.9867 - val_loss: 0.0887 - val_tp: 82.0000 - val_fp: 970.0000 - val_tn: 44512.0000 - val_fn: 5.0000 - val_accuracy: 0.9786 - val_precision: 0.0779 - val_recall: 0.9425 - val_auc: 0.9840
Epoch 49/1000
20/20 [==============================] - 0s 25ms/step - loss: 0.1572 - tp: 18217.0000 - fp: 750.0000 - tn: 19709.0000 - fn: 2284.0000 - accuracy: 0.9259 - precision: 0.9605 - recall: 0.8886 - auc: 0.9852 - val_loss: 0.0876 - val_tp: 82.0000 - val_fp: 964.0000 - val_tn: 44518.0000 - val_fn: 5.0000 - val_accuracy: 0.9787 - val_precision: 0.0784 - val_recall: 0.9425 - val_auc: 0.9841
Epoch 50/1000
20/20 [==============================] - ETA: 0s - loss: 0.1529 - tp: 18230.0000 - fp: 696.0000 - tn: 19874.0000 - fn: 2160.0000 - accuracy: 0.9303 - precision: 0.9632 - recall: 0.8941 - auc: 0.9860Restoring model weights from the end of the best epoch.
20/20 [==============================] - 0s 23ms/step - loss: 0.1529 - tp: 18230.0000 - fp: 696.0000 - tn: 19874.0000 - fn: 2160.0000 - accuracy: 0.9303 - precision: 0.9632 - recall: 0.8941 - auc: 0.9860 - val_loss: 0.0860 - val_tp: 82.0000 - val_fp: 941.0000 - val_tn: 44541.0000 - val_fn: 5.0000 - val_accuracy: 0.9792 - val_precision: 0.0802 - val_recall: 0.9425 - val_auc: 0.9843
Epoch 00050: early stopping

Перепроверьте историю тренировок

 plot_metrics(resampled_history)
 

PNG

Оценить метрики

 train_predictions_resampled = resampled_model.predict(train_features, batch_size=BATCH_SIZE)
test_predictions_resampled = resampled_model.predict(test_features, batch_size=BATCH_SIZE)
 
 resampled_results = resampled_model.evaluate(test_features, test_labels,
                                             batch_size=BATCH_SIZE, verbose=0)
for name, value in zip(resampled_model.metrics_names, resampled_results):
  print(name, ': ', value)
print()

plot_cm(test_labels, test_predictions_resampled)
 
loss :  0.09607589244842529
tp :  84.0
fp :  1195.0
tn :  55676.0
fn :  7.0
accuracy :  0.9788982272148132
precision :  0.06567630916833878
recall :  0.9230769276618958
auc :  0.9697299599647522

Legitimate Transactions Detected (True Negatives):  55676
Legitimate Transactions Incorrectly Detected (False Positives):  1195
Fraudulent Transactions Missed (False Negatives):  7
Fraudulent Transactions Detected (True Positives):  84
Total Fraudulent Transactions:  91

PNG

Участок РПЦ

 plot_roc("Train Baseline", train_labels, train_predictions_baseline, color=colors[0])
plot_roc("Test Baseline", test_labels, test_predictions_baseline, color=colors[0], linestyle='--')

plot_roc("Train Weighted", train_labels, train_predictions_weighted, color=colors[1])
plot_roc("Test Weighted", test_labels, test_predictions_weighted, color=colors[1], linestyle='--')

plot_roc("Train Resampled", train_labels, train_predictions_resampled,  color=colors[2])
plot_roc("Test Resampled", test_labels, test_predictions_resampled,  color=colors[2], linestyle='--')
plt.legend(loc='lower right')
 
<matplotlib.legend.Legend at 0x7fa4bc66c9b0>

PNG

Применение этого урока к вашей проблеме

Несбалансированная классификация данных - сложная задача, так как выборок очень мало. Вы всегда должны начинать с данных в первую очередь и делать все возможное, чтобы собрать как можно больше выборок и тщательно продумать, какие функции могут иметь отношение к модели, чтобы модель могла максимально эффективно использовать ваш класс меньшинства. В какой-то момент ваша модель может изо всех сил пытаться улучшить и получить желаемые результаты, поэтому важно учитывать контекст вашей проблемы и компромиссы между различными типами ошибок.