smallnorb

Stay organized with collections Save and categorize content based on your preferences.

This database is intended for experiments in 3D object recognition from shape. It contains images of 50 toys belonging to 5 generic categories: four-legged animals, human figures, airplanes, trucks, and cars. The objects were imaged by two cameras under 6 lighting conditions, 9 elevations (30 to 70 degrees every 5 degrees), and 18 azimuths (0 to 340 every 20 degrees).

The training set is composed of 5 instances of each category (instances 4, 6, 7, 8 and 9), and the test set of the remaining 5 instances (instances 0, 1, 2, 3, and 5).

Split Examples
'test' 24,300
'train' 24,300
  • Feature structure:
FeaturesDict({
    'image': Image(shape=(96, 96, 1), dtype=uint8),
    'image2': Image(shape=(96, 96, 1), dtype=uint8),
    'instance': ClassLabel(shape=(), dtype=int64, num_classes=10),
    'label_azimuth': ClassLabel(shape=(), dtype=int64, num_classes=18),
    'label_category': ClassLabel(shape=(), dtype=int64, num_classes=5),
    'label_elevation': ClassLabel(shape=(), dtype=int64, num_classes=9),
    'label_lighting': ClassLabel(shape=(), dtype=int64, num_classes=6),
})
  • Feature documentation:
Feature Class Shape Dtype Description
FeaturesDict
image Image (96, 96, 1) uint8
image2 Image (96, 96, 1) uint8
instance ClassLabel int64
label_azimuth ClassLabel int64
label_category ClassLabel int64
label_elevation ClassLabel int64
label_lighting ClassLabel int64
  • Citation:
@article{LeCun2004LearningMF,
  title={Learning methods for generic object recognition with invariance to pose and lighting},
  author={Yann LeCun and Fu Jie Huang and L{\'e}on Bottou},
  journal={Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition},
  year={2004},
  volume={2},
  pages={II-104 Vol.2}
}