Trả lời cho sự kiện TensorFlow Everywhere tại địa phương của bạn ngay hôm nay!
Trang này được dịch bởi Cloud Translation API.
Switch to English

Đào tạo phân tán với Keras

Xem trên TensorFlow.org Chạy trong Google Colab Xem nguồn trên GitHub Tải xuống sổ tay

Tổng quat

API tf.distribute.Strategy cung cấp một bản tóm tắt để phân phối đào tạo của bạn trên nhiều đơn vị xử lý. Mục đích là cho phép người dùng kích hoạt đào tạo phân tán bằng cách sử dụng các mô hình và mã đào tạo hiện có, với những thay đổi tối thiểu.

Hướng dẫn này sử dụng tf.distribute.MirroredStrategy , thực hiện sao chép trong đồ thị với đào tạo đồng bộ trên nhiều GPU trên một máy. Về cơ bản, nó sao chép tất cả các biến của mô hình vào mỗi bộ xử lý. Sau đó, nó sử dụng all-Reduce để kết hợp các gradient từ tất cả các bộ xử lý và áp dụng giá trị kết hợp cho tất cả các bản sao của mô hình.

MirroredStrategy là một trong một số chiến lược phân phối có sẵn trong lõi TensorFlow. Bạn có thể đọc thêm về các chiến lược tại hướng dẫn chiến lược phân phối .

API Keras

Ví dụ này sử dụng API tf.keras để xây dựng mô hình và vòng lặp đào tạo. Đối với các vòng huấn luyện tùy chỉnh, hãy xem hướng dẫn tf.distribute.Strategy với các vòng huấn luyện .

Nhập phụ thuộc

# Import TensorFlow and TensorFlow Datasets

import tensorflow_datasets as tfds
import tensorflow as tf

import os
print(tf.__version__)
2.3.0

Tải xuống tập dữ liệu

Tải xuống tập dữ liệu MNIST và tải nó từ Tập dữ liệu TensorFlow . Điều này trả về một tập dữ liệu ở định dạng tf.data .

Đặt with_info thành True bao gồm siêu dữ liệu cho toàn bộ tập dữ liệu, đang được lưu ở đây để info . Trong số những thứ khác, đối tượng siêu dữ liệu này bao gồm số lượng các ví dụ huấn luyện và thử nghiệm.

datasets, info = tfds.load(name='mnist', with_info=True, as_supervised=True)

mnist_train, mnist_test = datasets['train'], datasets['test']
Downloading and preparing dataset mnist/3.0.1 (download: 11.06 MiB, generated: 21.00 MiB, total: 32.06 MiB) to /home/kbuilder/tensorflow_datasets/mnist/3.0.1...

WARNING:absl:Dataset mnist is hosted on GCS. It will automatically be downloaded to your
local data directory. If you'd instead prefer to read directly from our public
GCS bucket (recommended if you're running on GCP), you can instead pass
`try_gcs=True` to `tfds.load` or set `data_dir=gs://tfds-data/datasets`.


Dataset mnist downloaded and prepared to /home/kbuilder/tensorflow_datasets/mnist/3.0.1. Subsequent calls will reuse this data.

Xác định chiến lược phân phối

Tạo một đối tượng MirroredStrategy . Điều này sẽ xử lý phân phối và cung cấp trình quản lý ngữ cảnh ( tf.distribute.MirroredStrategy.scope ) để xây dựng mô hình của bạn bên trong.

strategy = tf.distribute.MirroredStrategy()
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)

INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)

print('Number of devices: {}'.format(strategy.num_replicas_in_sync))
Number of devices: 1

Thiết lập đường dẫn đầu vào

Khi đào tạo một mô hình có nhiều GPU, bạn có thể sử dụng hiệu quả sức mạnh tính toán bổ sung bằng cách tăng kích thước lô. Nói chung, hãy sử dụng kích thước lô lớn nhất phù hợp với bộ nhớ GPU và điều chỉnh tốc độ học tập cho phù hợp.

# You can also do info.splits.total_num_examples to get the total
# number of examples in the dataset.

num_train_examples = info.splits['train'].num_examples
num_test_examples = info.splits['test'].num_examples

BUFFER_SIZE = 10000

BATCH_SIZE_PER_REPLICA = 64
BATCH_SIZE = BATCH_SIZE_PER_REPLICA * strategy.num_replicas_in_sync

Các giá trị pixel, là 0-255, phải được chuẩn hóa thành phạm vi 0-1 . Xác định thang đo này trong một hàm.

def scale(image, label):
  image = tf.cast(image, tf.float32)
  image /= 255

  return image, label

Áp dụng chức năng này cho dữ liệu đào tạo và kiểm tra, xáo trộn dữ liệu đào tạo và hàng loạt để đào tạo . Lưu ý rằng chúng tôi cũng đang giữ một bộ nhớ đệm trong bộ nhớ của dữ liệu đào tạo để cải thiện hiệu suất.

train_dataset = mnist_train.map(scale).cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
eval_dataset = mnist_test.map(scale).batch(BATCH_SIZE)

Tạo mô hình

Tạo và biên dịch các mô hình Keras trong bối cảnh strategy.scope .

with strategy.scope():
  model = tf.keras.Sequential([
      tf.keras.layers.Conv2D(32, 3, activation='relu', input_shape=(28, 28, 1)),
      tf.keras.layers.MaxPooling2D(),
      tf.keras.layers.Flatten(),
      tf.keras.layers.Dense(64, activation='relu'),
      tf.keras.layers.Dense(10)
  ])

  model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                optimizer=tf.keras.optimizers.Adam(),
                metrics=['accuracy'])

Xác định các lệnh gọi lại

Các lệnh gọi lại được sử dụng ở đây là:

  • TensorBoard : Lệnh gọi lại này viết nhật ký cho TensorBoard, cho phép bạn trực quan hóa các biểu đồ.
  • Điểm kiểm tra mô hình : Cuộc gọi lại này lưu mô hình sau mỗi kỷ nguyên.
  • Bộ lập lịch biểu tốc độ học tập : Sử dụng lệnh gọi lại này, bạn có thể lập lịch biểu tốc độ học tập thay đổi sau mỗi kỷ nguyên / đợt.

Với mục đích minh họa, hãy thêm lệnh gọi lại in để hiển thị tỷ lệ học tập trong sổ ghi chép.

# Define the checkpoint directory to store the checkpoints

checkpoint_dir = './training_checkpoints'
# Name of the checkpoint files
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt_{epoch}")
# Function for decaying the learning rate.
# You can define any decay function you need.
def decay(epoch):
  if epoch < 3:
    return 1e-3
  elif epoch >= 3 and epoch < 7:
    return 1e-4
  else:
    return 1e-5
# Callback for printing the LR at the end of each epoch.
class PrintLR(tf.keras.callbacks.Callback):
  def on_epoch_end(self, epoch, logs=None):
    print('\nLearning rate for epoch {} is {}'.format(epoch + 1,
                                                      model.optimizer.lr.numpy()))
callbacks = [
    tf.keras.callbacks.TensorBoard(log_dir='./logs'),
    tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_prefix,
                                       save_weights_only=True),
    tf.keras.callbacks.LearningRateScheduler(decay),
    PrintLR()
]

Đào tạo và đánh giá

Bây giờ, đào tạo mô hình theo cách thông thường, gọi sự fit trên mô hình và chuyển vào tập dữ liệu được tạo ở đầu hướng dẫn. Bước này giống nhau cho dù bạn có đang phân phối khóa đào tạo hay không.

model.fit(train_dataset, epochs=12, callbacks=callbacks)
Epoch 1/12
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/data/ops/multi_device_iterator_ops.py:601: get_next_as_optional (from tensorflow.python.data.ops.iterator_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.Iterator.get_next_as_optional()` instead.

WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/data/ops/multi_device_iterator_ops.py:601: get_next_as_optional (from tensorflow.python.data.ops.iterator_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.Iterator.get_next_as_optional()` instead.

INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).

INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).

INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).

INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).

INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).

INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).

INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).

INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).

INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).

INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).

INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).

INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).

INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).

INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).

INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).

INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).

  1/938 [..............................] - ETA: 0s - loss: 2.3083 - accuracy: 0.0156WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager.profiler) is deprecated and will be removed after 2020-07-01.
Instructions for updating:
use `tf.profiler.experimental.stop` instead.

WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager.profiler) is deprecated and will be removed after 2020-07-01.
Instructions for updating:
use `tf.profiler.experimental.stop` instead.

WARNING:tensorflow:Callbacks method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0047s vs `on_train_batch_end` time: 0.0316s). Check your callbacks.

WARNING:tensorflow:Callbacks method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0047s vs `on_train_batch_end` time: 0.0316s). Check your callbacks.

932/938 [============================>.] - ETA: 0s - loss: 0.1947 - accuracy: 0.9441
Learning rate for epoch 1 is 0.0010000000474974513
938/938 [==============================] - 4s 4ms/step - loss: 0.1939 - accuracy: 0.9442
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).

INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).

INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).

INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).

Epoch 2/12
935/938 [============================>.] - ETA: 0s - loss: 0.0636 - accuracy: 0.9811
Learning rate for epoch 2 is 0.0010000000474974513
938/938 [==============================] - 2s 3ms/step - loss: 0.0634 - accuracy: 0.9812
Epoch 3/12
936/938 [============================>.] - ETA: 0s - loss: 0.0438 - accuracy: 0.9864
Learning rate for epoch 3 is 0.0010000000474974513
938/938 [==============================] - 2s 3ms/step - loss: 0.0439 - accuracy: 0.9864
Epoch 4/12
937/938 [============================>.] - ETA: 0s - loss: 0.0234 - accuracy: 0.9936
Learning rate for epoch 4 is 9.999999747378752e-05
938/938 [==============================] - 2s 3ms/step - loss: 0.0234 - accuracy: 0.9936
Epoch 5/12
932/938 [============================>.] - ETA: 0s - loss: 0.0204 - accuracy: 0.9948
Learning rate for epoch 5 is 9.999999747378752e-05
938/938 [==============================] - 3s 3ms/step - loss: 0.0204 - accuracy: 0.9948
Epoch 6/12
919/938 [============================>.] - ETA: 0s - loss: 0.0188 - accuracy: 0.9951
Learning rate for epoch 6 is 9.999999747378752e-05
938/938 [==============================] - 2s 3ms/step - loss: 0.0187 - accuracy: 0.9951
Epoch 7/12
921/938 [============================>.] - ETA: 0s - loss: 0.0172 - accuracy: 0.9960
Learning rate for epoch 7 is 9.999999747378752e-05
938/938 [==============================] - 2s 3ms/step - loss: 0.0171 - accuracy: 0.9960
Epoch 8/12
931/938 [============================>.] - ETA: 0s - loss: 0.0147 - accuracy: 0.9970
Learning rate for epoch 8 is 9.999999747378752e-06
938/938 [==============================] - 2s 3ms/step - loss: 0.0147 - accuracy: 0.9970
Epoch 9/12
938/938 [==============================] - ETA: 0s - loss: 0.0144 - accuracy: 0.9970
Learning rate for epoch 9 is 9.999999747378752e-06
938/938 [==============================] - 2s 3ms/step - loss: 0.0144 - accuracy: 0.9970
Epoch 10/12
924/938 [============================>.] - ETA: 0s - loss: 0.0143 - accuracy: 0.9971
Learning rate for epoch 10 is 9.999999747378752e-06
938/938 [==============================] - 2s 3ms/step - loss: 0.0142 - accuracy: 0.9971
Epoch 11/12
937/938 [============================>.] - ETA: 0s - loss: 0.0140 - accuracy: 0.9972
Learning rate for epoch 11 is 9.999999747378752e-06
938/938 [==============================] - 2s 3ms/step - loss: 0.0140 - accuracy: 0.9972
Epoch 12/12
923/938 [============================>.] - ETA: 0s - loss: 0.0139 - accuracy: 0.9973
Learning rate for epoch 12 is 9.999999747378752e-06
938/938 [==============================] - 2s 3ms/step - loss: 0.0139 - accuracy: 0.9973

<tensorflow.python.keras.callbacks.History at 0x7f50a0d94780>

Như bạn có thể thấy bên dưới, các trạm kiểm soát đang được lưu.

# check the checkpoint directory
ls {checkpoint_dir}
checkpoint           ckpt_4.data-00000-of-00001
ckpt_1.data-00000-of-00001   ckpt_4.index
ckpt_1.index             ckpt_5.data-00000-of-00001
ckpt_10.data-00000-of-00001  ckpt_5.index
ckpt_10.index            ckpt_6.data-00000-of-00001
ckpt_11.data-00000-of-00001  ckpt_6.index
ckpt_11.index            ckpt_7.data-00000-of-00001
ckpt_12.data-00000-of-00001  ckpt_7.index
ckpt_12.index            ckpt_8.data-00000-of-00001
ckpt_2.data-00000-of-00001   ckpt_8.index
ckpt_2.index             ckpt_9.data-00000-of-00001
ckpt_3.data-00000-of-00001   ckpt_9.index
ckpt_3.index

Để xem mô hình hoạt động như thế nào, hãy tải điểm kiểm tra mới nhất và gọi evaluate trên dữ liệu thử nghiệm.

Gọi evaluate như trước khi sử dụng bộ dữ liệu thích hợp.

model.load_weights(tf.train.latest_checkpoint(checkpoint_dir))

eval_loss, eval_acc = model.evaluate(eval_dataset)

print('Eval loss: {}, Eval Accuracy: {}'.format(eval_loss, eval_acc))
157/157 [==============================] - 1s 6ms/step - loss: 0.0393 - accuracy: 0.9864
Eval loss: 0.03928377106785774, Eval Accuracy: 0.9864000082015991

Để xem đầu ra, bạn có thể tải xuống và xem nhật ký TensorBoard tại thiết bị đầu cuối.

$ tensorboard --logdir=path/to/log-directory
ls -sh ./logs
total 4.0K
4.0K train

Xuất sang SavedModel

Xuất biểu đồ và các biến sang định dạng SavedModel bất khả tri nền tảng. Sau khi mô hình của bạn được lưu, bạn có thể tải nó có hoặc không có phạm vi.

path = 'saved_model/'
model.save(path, save_format='tf')
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/tracking/tracking.py:111: Model.state_updates (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version.
Instructions for updating:
This property should not be used in TensorFlow 2.0, as updates are applied automatically.

WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/tracking/tracking.py:111: Model.state_updates (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version.
Instructions for updating:
This property should not be used in TensorFlow 2.0, as updates are applied automatically.

WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/tracking/tracking.py:111: Layer.updates (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.
Instructions for updating:
This property should not be used in TensorFlow 2.0, as updates are applied automatically.

WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/tracking/tracking.py:111: Layer.updates (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.
Instructions for updating:
This property should not be used in TensorFlow 2.0, as updates are applied automatically.

INFO:tensorflow:Assets written to: saved_model/assets

INFO:tensorflow:Assets written to: saved_model/assets

Tải mô hình mà không có strategy.scope .

unreplicated_model = tf.keras.models.load_model(path)

unreplicated_model.compile(
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    optimizer=tf.keras.optimizers.Adam(),
    metrics=['accuracy'])

eval_loss, eval_acc = unreplicated_model.evaluate(eval_dataset)

print('Eval loss: {}, Eval Accuracy: {}'.format(eval_loss, eval_acc))
157/157 [==============================] - 1s 3ms/step - loss: 0.0393 - accuracy: 0.9864
Eval loss: 0.03928377106785774, Eval Accuracy: 0.9864000082015991

Tải mô hình bằng strategy.scope .

with strategy.scope():
  replicated_model = tf.keras.models.load_model(path)
  replicated_model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                           optimizer=tf.keras.optimizers.Adam(),
                           metrics=['accuracy'])

  eval_loss, eval_acc = replicated_model.evaluate(eval_dataset)
  print ('Eval loss: {}, Eval Accuracy: {}'.format(eval_loss, eval_acc))
157/157 [==============================] - 1s 4ms/step - loss: 0.0393 - accuracy: 0.9864
Eval loss: 0.03928377106785774, Eval Accuracy: 0.9864000082015991

Ví dụ và Hướng dẫn

Dưới đây là một số ví dụ để sử dụng chiến lược phân phối với keras fit / compile:

  1. Ví dụ về máy biến áp được đào tạo bằng cách sử dụng tf.distribute.MirroredStrategy
  2. Ví dụ NCF được đào tạo bằng cách sử dụng tf.distribute.MirroredStrategy .

Các ví dụ khác được liệt kê trong Hướng dẫn chiến lược phân phối

Bước tiếp theo