Calcule la perte de charnière catégorielle entre les étiquettes et les prédictions.
loss = maximum(neg - pos + 1, 0) où neg=maximum((1-labels)*predictions) et pos=sum(labels*predictions)
les valeurs labels devraient être 0 ou 1.
Utilisation autonome :
Operand<TFloat32> labels =
tf.constant(new float[][] { {0, 1}, {0, 0} });
Operand<TFloat32> predictions =
tf.constant(new float[][] { {0.6f, 0.4f}, {0.4f, 0.6f} });
CategoricalHinge categoricalHinge = new CategoricalHinge(tf);
Operand<TFloat32> result = categoricalHinge.call(labels, predictions);
// produces 1.4
Appel avec le poids de l'échantillon :
Operand<TFloat32> sampleWeight = tf.constant(new float[] {1f, 0.f});
Operand<TFloat32> result = categoricalHinge.call(labels, predictions, sampleWeight);
// produces 0.6f
Utilisation du type de réduction SUM :
CategoricalHinge categoricalHinge = new CategoricalHinge(tf, Reduction.SUM);
Operand<TFloat32> result = categoricalHinge.call(labels, predictions);
// produces 2.8f
Utilisation du type de réduction NONE :
CategoricalHinge categoricalHinge =
new CategoricalHinge(tf, Reduction.NONE);
Operand<TFloat32> result = categoricalHinge.call(labels, predictions);
// produces [1.2f, 1.6f]
Champs hérités
Constructeurs Publics
Charnière catégorielle (Ops tf) Crée une perte de charnière catégorique en utilisant getSimpleName() comme nom de perte et une réduction de perte de REDUCTION_DEFAULT | |
Charnière catégorielle (Ops tf, Réduction réduction) Crée une perte de charnière catégorique en utilisant getSimpleName() comme nom de perte | |
Méthodes publiques
| <T étend TNumber > Opérande <T> |
Méthodes héritées
Constructeurs Publics
charnière catégorique publique (Ops tf)
Crée une perte de charnière catégorique en utilisant getSimpleName() comme nom de perte et une réduction de perte de REDUCTION_DEFAULT
Paramètres
| tf | les opérations TensorFlow |
|---|
charnière catégorique publique (Ops tf, réduction de réduction )
Crée une perte de charnière catégorique en utilisant getSimpleName() comme nom de perte
Paramètres
| tf | les opérations TensorFlow |
|---|---|
| réduction | Type de réduction à appliquer sur le sinistre. |
public CategoricalHinge (Ops tf, nom de chaîne, réduction de réduction )
Crée une charnière catégorielle
Paramètres
| tf | les opérations TensorFlow |
|---|---|
| nom | le nom de la perte |
| réduction | Type de réduction à appliquer sur le sinistre. |
Méthodes publiques
appel public Operand <T> ( Operand <? extends TNumber > labels, Operand <T> prédictions, Operand <T> sampleWeights)
Génère un opérande qui calcule la perte.
Paramètres
| étiquettes | les valeurs ou étiquettes de vérité |
|---|---|
| prédictions | les prédictions |
| exemples de poids | sampleWeights facultatif agit comme un coefficient pour la perte. Si un scalaire est fourni, alors la perte est simplement adaptée à la valeur donnée. Si SampleWeights est un tenseur de taille [batch_size], alors la perte totale pour chaque échantillon du lot est redimensionnée par l'élément correspondant dans le vecteur SampleWeights. Si la forme de SampleWeights est [batch_size, d0, .. dN-1] (ou peut être diffusée vers cette forme), alors chaque élément de perte de prédictions est mis à l'échelle par la valeur correspondante de SampleWeights. (Remarque sur dN-1 : toutes les fonctions de perte sont réduites d'une dimension, généralement axis=-1.) |
Retours
- la perte