Ayuda a proteger la Gran Barrera de Coral con TensorFlow en Kaggle Únete Challenge

clevr

CLEVR es un conjunto de datos de diagnóstico que prueba una variedad de habilidades de razonamiento visual. Contiene sesgos mínimos y anotaciones detalladas que describen el tipo de razonamiento que requiere cada pregunta.

Separar Ejemplos de
'test' 15.000
'train' 70.000
'validation' 15.000
  • características:
FeaturesDict({
    'file_name': Text(shape=(), dtype=tf.string),
    'image': Image(shape=(None, None, 3), dtype=tf.uint8),
    'objects': Sequence({
        '3d_coords': Tensor(shape=(3,), dtype=tf.float32),
        'color': ClassLabel(shape=(), dtype=tf.int64, num_classes=8),
        'material': ClassLabel(shape=(), dtype=tf.int64, num_classes=2),
        'pixel_coords': Tensor(shape=(3,), dtype=tf.float32),
        'rotation': tf.float32,
        'shape': ClassLabel(shape=(), dtype=tf.int64, num_classes=3),
        'size': ClassLabel(shape=(), dtype=tf.int64, num_classes=2),
    }),
    'question_answer': Sequence({
        'answer': Text(shape=(), dtype=tf.string),
        'question': Text(shape=(), dtype=tf.string),
    }),
})

Visualización

  • Cita:
@inproceedings{johnson2017clevr,
  title={ {CLEVR}: A diagnostic dataset for compositional language and elementary visual reasoning},
  author={Johnson, Justin and Hariharan, Bharath and van der Maaten, Laurens and Fei-Fei, Li and Lawrence Zitnick, C and Girshick, Ross},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2017}
}