Ayuda a proteger la Gran Barrera de Coral con TensorFlow en Kaggle Únete Challenge

d4rl_mujoco_hopper

  • Descripción:

D4RL es un punto de referencia de código abierto para el aprendizaje por refuerzo fuera de línea. Proporciona entornos y conjuntos de datos estandarizados para el entrenamiento y los algoritmos de evaluación comparativa.

@misc{fu2020d4rl,
    title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},
    author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},
    year={2020},
    eprint={2004.07219},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

d4rl_mujoco_hopper / v0-expert (configuración predeterminada)

  • Tamaño del paquete: 51.56 MiB

  • Conjunto de datos de tamaño: 64.10 MiB

  • Auto-caché ( documentación ): Sí

  • Fraccionamientos:

Separar Ejemplos de
'train' 1.029
  • características:
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(11,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_hopper / v0-medium

  • Tamaño del paquete: 51.74 MiB

  • Conjunto de datos de tamaño: 64.68 MiB

  • Auto-caché ( documentación ): Sí

  • Fraccionamientos:

Separar Ejemplos de
'train' 3,064
  • características:
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(11,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_hopper / v0-medium-expert

  • Tamaño del paquete: 62.01 MiB

  • Conjunto de datos de tamaño: 77.25 MiB

  • Auto-caché ( documentación ): Sí

  • Fraccionamientos:

Separar Ejemplos de
'train' 2,277
  • características:
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(11,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_hopper / v0-mixed

  • Tamaño del paquete: 10.48 MiB

  • Conjunto de datos de tamaño: 13.15 MiB

  • Auto-caché ( documentación ): Sí

  • Fraccionamientos:

Separar Ejemplos de
'train' 1250
  • características:
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(11,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_hopper / v0-random

  • Tamaño del paquete: 51.83 MiB

  • Conjunto de datos de tamaño: 66.06 MiB

  • Auto-caché ( documentación ): Sí

  • Fraccionamientos:

Separar Ejemplos de
'train' 8.793
  • características:
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(11,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_hopper / v1-expert

  • Tamaño del paquete: 93.19 MiB

  • Conjunto de datos de tamaño: 608.03 MiB

  • Auto-caché ( documentación ): No

  • Fraccionamientos:

Separar Ejemplos de
'train' 1.836
  • características:
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 11), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(3,), dtype=tf.float32),
            'weight': Tensor(shape=(3, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(3,), dtype=tf.float32),
            'weight': Tensor(shape=(3, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(6,), dtype=tf.float32),
            'qvel': Tensor(shape=(6,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(11,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_hopper / v1-medium

  • Tamaño del paquete: 92.03 MiB

  • Tamaño de conjunto de datos: 1.78 GiB

  • Auto-caché ( documentación ): No

  • Fraccionamientos:

Separar Ejemplos de
'train' 6.328
  • características:
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 11), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(3,), dtype=tf.float32),
            'weight': Tensor(shape=(3, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(3,), dtype=tf.float32),
            'weight': Tensor(shape=(3, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(6,), dtype=tf.float32),
            'qvel': Tensor(shape=(6,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(11,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_hopper / v1-medium-expert

  • Tamaño del paquete: 184.59 MiB

  • Conjunto de datos de tamaño: 230.23 MiB

  • Auto-caché ( documentación ): Sólo cuando shuffle_files=False (tren)

  • Fraccionamientos:

Separar Ejemplos de
'train' 8.163
  • características:
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(6,), dtype=tf.float32),
            'qvel': Tensor(shape=(6,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(11,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_hopper / v1-medium-replay

  • Tamaño del paquete: 55.65 MiB

  • Conjunto de datos de tamaño: 34.74 MiB

  • Auto-caché ( documentación ): Sí

  • Fraccionamientos:

Separar Ejemplos de
'train' 1,151
  • características:
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=tf.float64),
        'discount': tf.float64,
        'infos': FeaturesDict({
            'action_log_probs': tf.float64,
            'qpos': Tensor(shape=(6,), dtype=tf.float64),
            'qvel': Tensor(shape=(6,), dtype=tf.float64),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(11,), dtype=tf.float64),
        'reward': tf.float64,
    }),
})

d4rl_mujoco_hopper / v1-full-replay

  • Tamaño del paquete: 183.32 MiB

  • Conjunto de datos de tamaño: 114.66 MiB

  • Auto-caché ( documentación ): Sí

  • Fraccionamientos:

Separar Ejemplos de
'train' 2.907
  • características:
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=tf.float64),
        'discount': tf.float64,
        'infos': FeaturesDict({
            'action_log_probs': tf.float64,
            'qpos': Tensor(shape=(6,), dtype=tf.float64),
            'qvel': Tensor(shape=(6,), dtype=tf.float64),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(11,), dtype=tf.float64),
        'reward': tf.float64,
    }),
})

d4rl_mujoco_hopper / v1-random

  • Tamaño del paquete: 91.11 MiB

  • Conjunto de datos de tamaño: 130.73 MiB

  • Auto-caché ( documentación ): Sólo cuando shuffle_files=False (tren)

  • Fraccionamientos:

Separar Ejemplos de
'train' 45,265
  • características:
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(6,), dtype=tf.float32),
            'qvel': Tensor(shape=(6,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(11,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_hopper / v2-expert

  • Tamaño del paquete: 134.46 MiB

  • Conjunto de datos de tamaño: 390.29 MiB

  • Auto-caché ( documentación ): No

  • Fraccionamientos:

Separar Ejemplos de
'train' 1.028
  • características:
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 11), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(3,), dtype=tf.float32),
            'weight': Tensor(shape=(3, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(3,), dtype=tf.float32),
            'weight': Tensor(shape=(3, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(6,), dtype=tf.float32),
            'qvel': Tensor(shape=(6,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(11,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_hopper / v2-full-replay

  • Tamaño del paquete: 182.80 MiB

  • Conjunto de datos de tamaño: 114.92 MiB

  • Auto-caché ( documentación ): Sí

  • Fraccionamientos:

Separar Ejemplos de
'train' 3,515
  • características:
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=tf.float64),
        'discount': tf.float64,
        'infos': FeaturesDict({
            'action_log_probs': tf.float64,
            'qpos': Tensor(shape=(6,), dtype=tf.float64),
            'qvel': Tensor(shape=(6,), dtype=tf.float64),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(11,), dtype=tf.float64),
        'reward': tf.float64,
    }),
})

d4rl_mujoco_hopper / v2-medium

  • Tamaño del paquete: 134.93 MiB

  • Conjunto de datos de tamaño: 702.57 MiB

  • Auto-caché ( documentación ): No

  • Fraccionamientos:

Separar Ejemplos de
'train' 2,187
  • características:
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 11), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(3,), dtype=tf.float32),
            'weight': Tensor(shape=(3, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(3,), dtype=tf.float32),
            'weight': Tensor(shape=(3, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(6,), dtype=tf.float32),
            'qvel': Tensor(shape=(6,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(11,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_hopper / v2-medium-expert

  • Tamaño del paquete: 268.78 MiB

  • Conjunto de datos de tamaño: 228.17 MiB

  • Auto-caché ( documentación ): Sólo cuando shuffle_files=False (tren)

  • Fraccionamientos:

Separar Ejemplos de
'train' 3,214
  • características:
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(6,), dtype=tf.float32),
            'qvel': Tensor(shape=(6,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(11,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_hopper / v2-medium-replay

  • Tamaño del paquete: 73.67 MiB

  • Conjunto de datos de tamaño: 46.47 MiB

  • Auto-caché ( documentación ): Sí

  • Fraccionamientos:

Separar Ejemplos de
'train' 2.041
  • características:
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=tf.float64),
        'discount': tf.float64,
        'infos': FeaturesDict({
            'action_log_probs': tf.float64,
            'qpos': Tensor(shape=(6,), dtype=tf.float64),
            'qvel': Tensor(shape=(6,), dtype=tf.float64),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(11,), dtype=tf.float64),
        'reward': tf.float64,
    }),
})

d4rl_mujoco_hopper / v2-random

  • Tamaño del paquete: 132.99 MiB

  • Conjunto de datos de tamaño: 130.72 MiB

  • Auto-caché ( documentación ): Sólo cuando shuffle_files=False (tren)

  • Fraccionamientos:

Separar Ejemplos de
'train' 45,240
  • características:
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(6,), dtype=tf.float32),
            'qvel': Tensor(shape=(6,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(11,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})