¡El Día de la Comunidad de ML es el 9 de noviembre! Únase a nosotros para recibir actualizaciones de TensorFlow, JAX, y más Más información

geirhos_conflict_stimuli

  • Descripción:

Los estímulos de conflicto de forma / textura de "CNN entrenados en ImageNet están sesgados hacia la textura; el aumento del sesgo de forma mejora la precisión y la robustez".

Tenga en cuenta que, aunque la fuente del conjunto de datos contiene imágenes con forma y textura coincidentes y las incluimos aquí, se ignoran para la mayoría de las evaluaciones en el documento original.

Separar Ejemplos de
'test' 1.280
  • características:
FeaturesDict({
    'file_name': Text(shape=(), dtype=tf.string),
    'image': Image(shape=(None, None, 3), dtype=tf.uint8),
    'shape_imagenet_labels': Sequence(ClassLabel(shape=(), dtype=tf.int64, num_classes=1000)),
    'shape_label': ClassLabel(shape=(), dtype=tf.int64, num_classes=16),
    'texture_imagenet_labels': Sequence(ClassLabel(shape=(), dtype=tf.int64, num_classes=1000)),
    'texture_label': ClassLabel(shape=(), dtype=tf.int64, num_classes=16),
})

Visualización

  • Cita:
@inproceedings{
  geirhos2018imagenettrained,
  title={ImageNet-trained {CNN}s are biased towards texture; increasing shape
         bias improves accuracy and robustness.},
  author={Robert Geirhos and Patricia Rubisch and Claudio Michaelis and
          Matthias Bethge and Felix A. Wichmann and Wieland Brendel},
  booktitle={International Conference on Learning Representations},
  year={2019},
  url={https://openreview.net/forum?id=Bygh9j09KX},
}