Ayuda a proteger la Gran Barrera de Coral con TensorFlow en Kaggle Únete Challenge

robosuite_panda_pick_place_can

  • Descripción:

Estos datos han sido creados con el medio ambiente PickPlaceCan del simulador de brazo robótico RoboSuite . Los conjuntos de datos humanos se registraron por un solo operador usando el RLDS creador y un controlador de mando de juegos.

Los conjuntos de datos sintéticos se han grabado usando la biblioteca EnvLogger .

Los episodios constan de 400 pasos. En cada episodio, se agrega una etiqueta cuando se completa la tarea, esta etiqueta se almacena como parte de los metadatos del paso personalizado.

@misc{ramos2021rlds,
      title={RLDS: an Ecosystem to Generate, Share and Use Datasets in Reinforcement Learning},
      author={Sabela Ramos and Sertan Girgin and Léonard Hussenot and Damien Vincent and Hanna Yakubovich and Daniel Toyama and Anita Gergely and Piotr Stanczyk and Raphael Marinier and Jeremiah Harmsen and Olivier Pietquin and Nikola Momchev},
      year={2021},
      eprint={2111.02767},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

robosuite_panda_pick_place_can / human_dc29b40a (configuración predeterminada)

  • Descripción Config: conjunto de datos generado Humano (50 episodios).

  • Inicio: https://github.com/google-research/rlds

  • Tamaño del paquete: 96.67 MiB

  • Conjunto de datos de tamaño: 407.24 MiB

  • Fraccionamientos:

Separar Ejemplos de
'train' 50
  • características:
FeaturesDict({
    'agent_id': tf.string,
    'episode_id': tf.string,
    'episode_index': tf.int32,
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=tf.float64),
        'discount': tf.float64,
        'image': Image(shape=(None, None, 3), dtype=tf.uint8),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'Can_pos': Tensor(shape=(3,), dtype=tf.float64),
            'Can_quat': Tensor(shape=(4,), dtype=tf.float64),
            'Can_to_robot0_eef_pos': Tensor(shape=(3,), dtype=tf.float64),
            'Can_to_robot0_eef_quat': Tensor(shape=(4,), dtype=tf.float32),
            'object-state': Tensor(shape=(14,), dtype=tf.float64),
            'robot0_eef_pos': Tensor(shape=(3,), dtype=tf.float64),
            'robot0_eef_quat': Tensor(shape=(4,), dtype=tf.float64),
            'robot0_gripper_qpos': Tensor(shape=(2,), dtype=tf.float64),
            'robot0_gripper_qvel': Tensor(shape=(2,), dtype=tf.float64),
            'robot0_joint_pos_cos': Tensor(shape=(7,), dtype=tf.float64),
            'robot0_joint_pos_sin': Tensor(shape=(7,), dtype=tf.float64),
            'robot0_joint_vel': Tensor(shape=(7,), dtype=tf.float64),
            'robot0_proprio-state': Tensor(shape=(32,), dtype=tf.float64),
        }),
        'reward': tf.float64,
        'tag:placed': tf.bool,
    }),
})

robosuite_panda_pick_place_can / human_images_dc29b40a

Separar Ejemplos de
'train' 50
  • características:
FeaturesDict({
    'agent_id': tf.string,
    'episode_id': tf.string,
    'episode_index': tf.int32,
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=tf.float64),
        'discount': tf.float64,
        'image': Image(shape=(None, None, 3), dtype=tf.uint8),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'Can_pos': Tensor(shape=(3,), dtype=tf.float64),
            'Can_quat': Tensor(shape=(4,), dtype=tf.float64),
            'Can_to_robot0_eef_pos': Tensor(shape=(3,), dtype=tf.float64),
            'Can_to_robot0_eef_quat': Tensor(shape=(4,), dtype=tf.float32),
            'agentview_image': Image(shape=(256, 256, 3), dtype=tf.uint8),
            'birdview_image': Image(shape=(256, 256, 3), dtype=tf.uint8),
            'object-state': Tensor(shape=(14,), dtype=tf.float64),
            'robot0_eef_pos': Tensor(shape=(3,), dtype=tf.float64),
            'robot0_eef_quat': Tensor(shape=(4,), dtype=tf.float64),
            'robot0_eye_in_hand_image': Image(shape=(256, 256, 3), dtype=tf.uint8),
            'robot0_gripper_qpos': Tensor(shape=(2,), dtype=tf.float64),
            'robot0_gripper_qvel': Tensor(shape=(2,), dtype=tf.float64),
            'robot0_joint_pos_cos': Tensor(shape=(7,), dtype=tf.float64),
            'robot0_joint_pos_sin': Tensor(shape=(7,), dtype=tf.float64),
            'robot0_joint_vel': Tensor(shape=(7,), dtype=tf.float64),
            'robot0_proprio-state': Tensor(shape=(32,), dtype=tf.float64),
            'robot0_robotview_image': Image(shape=(256, 256, 3), dtype=tf.uint8),
        }),
        'reward': tf.float64,
        'tag:placed': tf.bool,
    }),
})

robosuite_panda_pick_place_can / Synthetic_stochastic_sac_afe13968

  • Descripción Config: conjunto de datos sintético generado por un agente estocástico entrenado con SAC (200 episodios).

  • Inicio: https://github.com/google-research/rlds

  • Tamaño del paquete: 144.44 MiB

  • Conjunto de datos de tamaño: 622.86 MiB

  • Fraccionamientos:

Separar Ejemplos de
'train' 200
  • características:
FeaturesDict({
    'agent_id': tf.string,
    'episode_id': tf.string,
    'episode_index': tf.int32,
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=tf.float32),
        'discount': tf.float64,
        'image': Image(shape=(None, None, 3), dtype=tf.uint8),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'Can_pos': Tensor(shape=(3,), dtype=tf.float32),
            'Can_quat': Tensor(shape=(4,), dtype=tf.float32),
            'Can_to_robot0_eef_pos': Tensor(shape=(3,), dtype=tf.float32),
            'Can_to_robot0_eef_quat': Tensor(shape=(4,), dtype=tf.float32),
            'object-state': Tensor(shape=(14,), dtype=tf.float32),
            'robot0_eef_pos': Tensor(shape=(3,), dtype=tf.float32),
            'robot0_eef_quat': Tensor(shape=(4,), dtype=tf.float32),
            'robot0_gripper_qpos': Tensor(shape=(2,), dtype=tf.float32),
            'robot0_gripper_qvel': Tensor(shape=(2,), dtype=tf.float32),
            'robot0_joint_pos_cos': Tensor(shape=(7,), dtype=tf.float32),
            'robot0_joint_pos_sin': Tensor(shape=(7,), dtype=tf.float32),
            'robot0_joint_vel': Tensor(shape=(7,), dtype=tf.float32),
            'robot0_proprio-state': Tensor(shape=(32,), dtype=tf.float32),
        }),
        'reward': tf.float64,
        'tag:placed': tf.bool,
    }),
})