מחלקה ציבורית MeanSquaredError
מחשב את הממוצע של ריבועי שגיאות בין תוויות ותחזיות.
loss = loss = square(labels - predictions)
שימוש עצמאי:
Operand<TFloat32> labels =
tf.constant(new float[][] { {0.f, 1.f}, {0.f, 0.f} });
Operand<TFloat32> predictions =
tf.constant(new float[][] { {1.f, 1.f}, {1.f, 0.f} });
MeanSquaredError mse = new MeanSquaredError(tf);
Operand<TFloat32> result = mse.call(labels, predictions);
// produces 0.5f
מתקשר עם משקל מדגם:
Operand<TFloat32> sampleWeight = tf.constant(new float[] {0.7f, 0.3f});
Operand<TFloat32> result = mse.call(labels, predictions, sampleWeight);
// produces 0.25f
שימוש בסוג הפחתת SUM :
MeanSquaredError mse = new MeanSquaredError(tf, Reduction.SUM);
Operand<TFloat32> result = mse.call(labels, predictions);
// produces 1.0f
שימוש בסוג הפחתה NONE :
MeanSquaredError mse = new MeanSquaredError(tf, Reduction.NONE);
Operand<TFloat32> result = mse.call(labels, predictions);
// produces [0.5f, 0.5f]
שדות בירושה
בונים ציבוריים
MeanSquaredError (Ops tf) יוצר הפסד MeanSquaredError באמצעות getSimpleName() כשם ההפסד והפחתת הפסד של REDUCTION_DEFAULT | |
MeanSquaredError (Ops tf, הפחתת הפחתה ) יוצר הפסד MeanSquaredError באמצעות getSimpleName() כשם ההפסד | |
שיטות ציבוריות
| <T מרחיב את TNummer > Operand <T> | שיחה ( Operand <? מרחיב את התוויות של TNumber >, תחזיות Operand <T>, Oprand <T> sampleWeights) יוצר אופרנד שמחשב את ההפסד. |
שיטות בירושה
בונים ציבוריים
public MeanSquaredError (Ops tf)
יוצר הפסד MeanSquaredError באמצעות getSimpleName() כשם ההפסד והפחתת הפסד של REDUCTION_DEFAULT
פרמטרים
| tf | ה- TensorFlow Ops |
|---|
public MeanSquaredError (Ops tf, הפחתת הפחתה )
יוצר הפסד MeanSquaredError באמצעות getSimpleName() כשם ההפסד
פרמטרים
| tf | ה- TensorFlow Ops |
|---|---|
| צִמצוּם | סוג ההפחתה שיחול על ההפסד. |
public MeanSquaredError (Ops tf, שם מחרוזת, הפחתת צמצום )
יוצר MeanSquaredError
פרמטרים
| tf | ה- TensorFlow Ops |
|---|---|
| שֵׁם | שם האובדן |
| צִמצוּם | סוג ההפחתה שיחול על ההפסד. |
שיטות ציבוריות
קריאת Operand <T> ציבורית ( Operand <? מרחיב את התוויות של TNumber >, תחזיות Operand <T>, Oprand <T> דוגמת משקלים)
יוצר אופרנד שמחשב את ההפסד.
פרמטרים
| תוויות | ערכי האמת או התוויות |
|---|---|
| תחזיות | את התחזיות |
| משקולות לדוגמה | SampleWeights אופציונליים פועלים כמקדם לאובדן. אם מסופק סקלר, אז ההפסד פשוט מוגדל לפי הערך הנתון. אם SampleWeights הוא טנסור בגודל [batch_size], אז ההפסד הכולל עבור כל דגימה של האצווה משתנה מחדש על ידי האלמנט המתאים בוקטור SampleWeights. אם הצורה של SampleWeights היא [batch_size, d0, ..dN-1] (או שניתן לשדר אותה לצורה זו), אז כל רכיב אובדן של חיזויים משתנה לפי הערך המתאים של SampleWeights. (הערה לגבי dN-1: כל פונקציות האובדן מצטמצמות במימד אחד, בדרך כלל ציר=-1.) |
מחזיר
- ההפסד