لدي سؤال؟ تواصل مع المجتمع في منتدى زيارة منتدى TensorFlow

chexpert

  • الوصف :

CheXpert عبارة عن مجموعة بيانات كبيرة من الأشعة السينية للصدر والمنافسة على التفسير الآلي لأشعة الصدر السينية ، والتي تتميز بملصقات عدم اليقين ومجموعات التقييم المعيارية المرجعية المسمى بالأشعة. يتكون من 224،316 صورة شعاعية للصدر لـ 65،240 مريضًا ، حيث تم جمع الفحوصات الشعاعية للصدر وتقارير الأشعة المرتبطة بها بأثر رجعي من مستشفى ستانفورد. تم تصنيف كل تقرير لوجود 14 ملاحظة على أنها إيجابية أو سلبية أو غير مؤكدة. قررنا على 14 ملاحظة على أساس الانتشار في التقارير وأهميتها السريرية.

يجب تنزيل مجموعة بيانات CheXpert بشكل منفصل بعد قراءة اتفاقية استخدام الأبحاث والموافقة عليها. للقيام بذلك ، يرجى اتباع التعليمات الموجودة على الموقع ، https://stanfordmlgroup.github.io/competitions/chexpert/

  • الصفحة الرئيسية : https://stanfordmlgroup.github.io/competitions/chexpert/

  • كود المصدر : tfds.image_classification.Chexpert

  • إصدارات :

    • 3.1.0 (افتراضي): لا توجد ملاحظات حول الإصدار.
  • حجم التنزيل : Unknown size

  • حجم مجموعة البيانات : Unknown size

  • إرشادات التنزيل اليدوي : تتطلب مجموعة البيانات هذه تنزيل بيانات المصدر يدويًا إلى download_config.manual_dir (الإعدادات الافتراضية على ~/tensorflow_datasets/downloads/manual/ ):
    يجب عليك التسجيل والموافقة على اتفاقية المستخدم في صفحة مجموعة البيانات: https://stanfordmlgroup.github.io/competitions/chexpert/ بعد ذلك ، عليك وضع دليل CheXpert-v1.0-small في manual_dir. يجب أن يحتوي على أدلة فرعية: train / and valid / with images وكذلك ملف train.csv و valid.csv

  • التخزين المؤقت التلقائي ( الوثائق ): غير معروف

  • الانقسامات :

انشق، مزق أمثلة
  • الميزات :
FeaturesDict({
    'image': Image(shape=(None, None, 3), dtype=tf.uint8),
    'image_view': ClassLabel(shape=(), dtype=tf.int64, num_classes=2),
    'label': Sequence(ClassLabel(shape=(), dtype=tf.int64, num_classes=4)),
    'name': Text(shape=(), dtype=tf.string),
})
@article{DBLP:journals/corr/abs-1901-07031,
  author    = {Jeremy Irvin and Pranav Rajpurkar and Michael Ko and Yifan Yu and Silviana Ciurea{-}Ilcus and Chris Chute and Henrik Marklund and Behzad Haghgoo and Robyn L. Ball and Katie Shpanskaya and Jayne Seekins and David A. Mong and Safwan S. Halabi and Jesse K. Sandberg and Ricky Jones and David B. Larson and Curtis P. Langlotz and Bhavik N. Patel and Matthew P. Lungren and Andrew Y. Ng},
  title     = {CheXpert: {A} Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison},
  journal   = {CoRR},
  volume    = {abs/1901.07031},
  year      = {2019},
  url       = {http://arxiv.org/abs/1901.07031},
  archivePrefix = {arXiv},
  eprint    = {1901.07031},
  timestamp = {Fri, 01 Feb 2019 13:39:59 +0100},
  biburl    = {https://dblp.org/rec/bib/journals/corr/abs-1901-07031},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}