لدي سؤال؟ تواصل مع المجتمع في منتدى زيارة منتدى TensorFlow

d4rl_mujoco_ant

  • الوصف :

D4RL هو معيار مفتوح المصدر للتعلم المعزز في وضع عدم الاتصال. يوفر بيئات ومجموعات بيانات موحدة للتدريب وخوارزميات قياس الأداء.

@misc{fu2020d4rl,
    title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},
    author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},
    year={2020},
    eprint={2004.07219},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

d4rl_mujoco_ant / v0-expert (التكوين الافتراضي)

  • حجم التحميل : 131.34 MiB

  • حجم مجموعة البيانات : 463.95 MiB

  • التخزين المؤقت التلقائي ( التوثيق ): لا

  • الانقسامات :

انشق، مزق أمثلة
'train' 1،288
  • الميزات :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v0-medium

  • حجم التحميل : 131.39 MiB

  • حجم مجموعة البيانات : 463.79 MiB

  • التخزين المؤقت التلقائي ( التوثيق ): لا

  • الانقسامات :

انشق، مزق أمثلة
'train' 1،122
  • الميزات :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v0-medium-expert

  • حجم التحميل : 262.73 MiB

  • حجم مجموعة البيانات : 927.74 MiB

  • التخزين المؤقت التلقائي ( التوثيق ): لا

  • الانقسامات :

انشق، مزق أمثلة
'train' 2410
  • الميزات :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v0- مختلط

  • حجم التحميل : 104.63 MiB

  • حجم مجموعة البيانات : 463.95 MiB

  • التخزين المؤقت التلقائي ( التوثيق ): لا

  • الانقسامات :

انشق، مزق أمثلة
'train' 1،320
  • الميزات :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v0- عشوائي

  • حجم التحميل : 139.50 MiB

  • حجم مجموعة البيانات : 463.98 MiB

  • التخزين المؤقت التلقائي ( التوثيق ): لا

  • الانقسامات :

انشق، مزق أمثلة
'train' 1،377
  • الميزات :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v1-expert

  • حجم التحميل : 220.72 MiB

  • حجم مجموعة البيانات : 967.09 MiB

  • التخزين المؤقت التلقائي ( التوثيق ): لا

  • الانقسامات :

انشق، مزق أمثلة
'train' 1033
  • الميزات :
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 111), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=tf.float32),
            'weight': Tensor(shape=(8, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=tf.float32),
            'weight': Tensor(shape=(8, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(15,), dtype=tf.float32),
            'qvel': Tensor(shape=(14,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v1-medium

  • حجم التحميل : 222.39 MiB

  • حجم مجموعة البيانات : 1022.25 MiB

  • التخزين المؤقت التلقائي ( التوثيق ): لا

  • الانقسامات :

انشق، مزق أمثلة
'train' 1179
  • الميزات :
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 111), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=tf.float32),
            'weight': Tensor(shape=(8, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=tf.float32),
            'weight': Tensor(shape=(8, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(15,), dtype=tf.float32),
            'qvel': Tensor(shape=(14,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v1- خبير متوسط

  • حجم التحميل : 442.25 MiB

  • حجم مجموعة البيانات : 1.13 GiB

  • التخزين المؤقت التلقائي ( التوثيق ): لا

  • الانقسامات :

انشق، مزق أمثلة
'train' 2،211
  • الميزات :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(15,), dtype=tf.float32),
            'qvel': Tensor(shape=(14,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v1- إعادة تشغيل متوسطة

  • حجم التحميل : 132.05 MiB

  • حجم مجموعة البيانات : 174.79 MiB

  • التخزين المؤقت التلقائي ( التوثيق ): فقط عندما يكون shuffle_files=False (قطار)

  • الانقسامات :

انشق، مزق أمثلة
'train' 485
  • الميزات :
0eaf2cc40

d4rl_mujoco_ant / v1- إعادة تشغيل كاملة

  • حجم التحميل : 437.57 MiB

  • حجم مجموعة البيانات : 578.53 MiB

  • التخزين المؤقت التلقائي ( التوثيق ): لا

  • الانقسامات :

انشق، مزق أمثلة
'train' 1،319
  • الميزات :
0eaf2cc40

d4rl_mujoco_ant / v1- عشوائي

  • حجم التحميل : 225.18 MiB

  • حجم مجموعة البيانات : 582.40 MiB

  • التخزين المؤقت التلقائي ( التوثيق ): لا

  • الانقسامات :

انشق، مزق أمثلة
'train' 5741
  • الميزات :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(15,), dtype=tf.float32),
            'qvel': Tensor(shape=(14,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v2-expert

  • حجم التحميل : 317.69 MiB

  • حجم مجموعة البيانات : 967.85 MiB

  • التخزين المؤقت التلقائي ( التوثيق ): لا

  • الانقسامات :

انشق، مزق أمثلة
'train' 1035
  • الميزات :
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 111), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=tf.float32),
            'weight': Tensor(shape=(8, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=tf.float32),
            'weight': Tensor(shape=(8, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(15,), dtype=tf.float32),
            'qvel': Tensor(shape=(14,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v2- إعادة تشغيل كاملة

  • حجم التحميل : 437.57 MiB

  • حجم مجموعة البيانات : 578.53 MiB

  • التخزين المؤقت التلقائي ( التوثيق ): لا

  • الانقسامات :

انشق، مزق أمثلة
'train' 1،319
  • الميزات :
0eaf2cc40

d4rl_mujoco_ant / v2-medium

  • حجم التحميل : 320.11 MiB

  • حجم مجموعة البيانات : 1.01 GiB

  • التخزين المؤقت التلقائي ( التوثيق ): لا

  • الانقسامات :

انشق، مزق أمثلة
'train' 1،203
  • الميزات :
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 111), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=tf.float32),
            'weight': Tensor(shape=(8, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=tf.float32),
            'weight': Tensor(shape=(8, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(15,), dtype=tf.float32),
            'qvel': Tensor(shape=(14,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v2-medium-expert

  • حجم التحميل : 637.02 MiB

  • حجم مجموعة البيانات : 1.13 GiB

  • التخزين المؤقت التلقائي ( التوثيق ): لا

  • الانقسامات :

انشق، مزق أمثلة
'train' 2237
  • الميزات :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(15,), dtype=tf.float32),
            'qvel': Tensor(shape=(14,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v2- إعادة تشغيل متوسطة

  • حجم التحميل : 132.05 MiB

  • حجم مجموعة البيانات : 174.79 MiB

  • التخزين المؤقت التلقائي ( التوثيق ): فقط عندما يكون shuffle_files=False (قطار)

  • الانقسامات :

انشق، مزق أمثلة
'train' 485
  • الميزات :
0eaf2cc40

d4rl_mujoco_ant / v2- عشوائي

  • حجم التحميل : 326.67 MiB

  • حجم مجموعة البيانات : 582.47 MiB

  • التخزين المؤقت التلقائي ( التوثيق ): لا

  • الانقسامات :

انشق، مزق أمثلة
'train' 5822
  • الميزات :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(15,), dtype=tf.float32),
            'qvel': Tensor(shape=(14,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})