# tfg.geometry.transformation.axis_angle.from_euler_with_small_angles_approximation

Converts small Euler angles to an axis-angle representation.

Under the small angle assumption, $$\sin(x)$$ and $$\cos(x)$$ can be approximated by their second order Taylor expansions, where $$\sin(x) \approx x$$ and $$\cos(x) \approx 1 - \frac{x^2}{2}$$. In the current implementation, the smallness of the angles is not verified.

The conversion is performed by first converting to a quaternion representation, and then by converting the quaternion to an axis-angle.

In the following, A1 to An are optional batch dimensions.

angles A tensor of shape [A1, ..., An, 3], where the last dimension represents the three small Euler angles. [A1, ..., An, 0] is the angle about x in radians [A1, ..., An, 1] is the angle about y in radians and [A1, ..., An, 2] is the angle about z in radians.
name A name for this op that defaults to "axis_angle_from_euler_with_small_angles_approximation".

A tuple of two tensors, respectively of shape [A1, ..., An, 3] and [A1, ..., An, 1], where the first tensor represents the axis, and the second represents the angle. The resulting axis is a normalized vector.

[{ "type": "thumb-down", "id": "missingTheInformationINeed", "label":"Missing the information I need" },{ "type": "thumb-down", "id": "tooComplicatedTooManySteps", "label":"Too complicated / too many steps" },{ "type": "thumb-down", "id": "outOfDate", "label":"Out of date" },{ "type": "thumb-down", "id": "samplesCodeIssue", "label":"Samples / code issue" },{ "type": "thumb-down", "id": "otherDown", "label":"Other" }]
[{ "type": "thumb-up", "id": "easyToUnderstand", "label":"Easy to understand" },{ "type": "thumb-up", "id": "solvedMyProblem", "label":"Solved my problem" },{ "type": "thumb-up", "id": "otherUp", "label":"Other" }]