TF 2.0 is out! Get hands-on practice at TF World, Oct 28-31. Use code TF20 for 20% off select passes. Register now

tfg.geometry.transformation.rotation_matrix_2d.from_euler

Converts an angle to a 2d rotation matrix.

tfg.geometry.transformation.rotation_matrix_2d.from_euler(
    angle,
    name=None
)

Defined in geometry/transformation/rotation_matrix_2d.py.

Converts an angle

\(\theta\)
to a 2d rotation matrix following the equation

$$ \mathbf{R} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}. $$

Note:

The resulting matrix rotates points in the

\(xy\)
-plane counterclockwise.

Note:

In the following, A1 to An are optional batch dimensions.

Args:

  • angle: A tensor of shape [A1, ..., An, 1], where the last dimension represents an angle in radians.
  • name: A name for this op that defaults to "rotation_matrix_2d_from_euler_angle".

Returns:

A tensor of shape [A1, ..., An, 2, 2], where the last dimension represents a 2d rotation matrix.

Raises:

  • ValueError: If the shape of angle is not supported.