# Module: tfg.geometry.transformation.rotation_matrix_2d

This module implements 2d rotation matrix functionalities.

Given an angle of rotation $$\theta$$ a 2d rotation matrix can be expressed as

$\mathbf{R} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}.$

## Functions

from_euler(...): Converts an angle to a 2d rotation matrix.

from_euler_with_small_angles_approximation(...): Converts an angle to a 2d rotation matrix under the small angle assumption.

inverse(...): Computes the inverse of a 2D rotation matrix.

is_valid(...): Determines if a matrix is a valid rotation matrix.

rotate(...): Rotates a 2d point using a 2d rotation matrix.

[{ "type": "thumb-down", "id": "missingTheInformationINeed", "label":"Missing the information I need" },{ "type": "thumb-down", "id": "tooComplicatedTooManySteps", "label":"Too complicated / too many steps" },{ "type": "thumb-down", "id": "outOfDate", "label":"Out of date" },{ "type": "thumb-down", "id": "samplesCodeIssue", "label":"Samples / code issue" },{ "type": "thumb-down", "id": "otherDown", "label":"Other" }]
[{ "type": "thumb-up", "id": "easyToUnderstand", "label":"Easy to understand" },{ "type": "thumb-up", "id": "solvedMyProblem", "label":"Solved my problem" },{ "type": "thumb-up", "id": "otherUp", "label":"Other" }]