एमएल समुदाय दिवस 9 नवंबर है! TensorFlow, JAX से नई जानकारी के लिए हमसे जुड़ें, और अधिक जानें

d4rl_mujoco_walker2d

  • विवरण:

D4RL ऑफ़लाइन सुदृढीकरण सीखने के लिए एक ओपन-सोर्स बेंचमार्क है। यह प्रशिक्षण और बेंचमार्किंग एल्गोरिदम के लिए मानकीकृत वातावरण और डेटासेट प्रदान करता है।

@misc{fu2020d4rl,
    title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},
    author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},
    year={2020},
    eprint={2004.07219},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

d4rl_mujoco_walker2d/v0-विशेषज्ञ (डिफ़ॉल्ट कॉन्फ़िगरेशन)

  • डाउनलोड का आकार: 78.41 MiB

  • डेटासेट का आकार: 98.64 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 1,628
  • विशेषताएं:
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d/v0-मध्यम

  • डाउनलोड का आकार: 80.83 MiB

  • डेटासेट का आकार: 99.72 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 5,315
  • विशेषताएं:
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d/v0-मध्यम-विशेषज्ञ

  • डाउनलोड का आकार: 159.24 MiB

  • डेटासेट का आकार: 198.36 MiB

  • ऑटो-कैश ( प्रलेखन ): केवल जब shuffle_files=False (ट्रेन)

  • विभाजन:

विभाजित करना उदाहरण
'train' 6,943
  • विशेषताएं:
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d/v0-मिश्रित

  • डाउनलोड का आकार: 8.42 MiB

  • डेटासेट का आकार: 10.06 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 501
  • विशेषताएं:
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d/v0-random

  • डाउनलोड का आकार: 78.41 MiB

  • डेटासेट का आकार: 112.04 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 50,988
  • विशेषताएं:
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d/v1-विशेषज्ञ

  • डाउनलोड का आकार: 143.06 MiB

  • डेटासेट का आकार: 452.55 MiB

  • ऑटो-कैश ( प्रलेखन ): नहीं

  • विभाजन:

विभाजित करना उदाहरण
'train' 1,003
  • विशेषताएं:
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 17), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d/v1-माध्यम

  • डाउनलोड का आकार: 144.23 MiB

  • डेटासेट का आकार: 509.97 MiB

  • ऑटो-कैश ( प्रलेखन ): नहीं

  • विभाजन:

विभाजित करना उदाहरण
'train' 1,207
  • विशेषताएं:
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 17), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d/v1-मध्यम-विशेषज्ञ

  • डाउनलोड का आकार: 286.69 MiB

  • डेटासेट का आकार: 342.18 MiB

  • ऑटो-कैश ( प्रलेखन ): नहीं

  • विभाजन:

विभाजित करना उदाहरण
'train' 2,209
  • विशेषताएं:
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d/v1-मीडियम-रीप्ले

  • डाउनलोड का आकार: 84.37 MiB

  • डेटासेट का आकार: 52.05 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 1,093
  • विशेषताएं:
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float64),
        'discount': tf.float64,
        'infos': FeaturesDict({
            'action_log_probs': tf.float64,
            'qpos': Tensor(shape=(9,), dtype=tf.float64),
            'qvel': Tensor(shape=(9,), dtype=tf.float64),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float64),
        'reward': tf.float64,
    }),
})

d4rl_mujoco_walker2d/v1-पूर्ण-रीप्ले

  • डाउनलोड का आकार: 278.95 MiB

  • डेटासेट का आकार: 171.49 MiB

  • ऑटो-कैश ( प्रलेखन ): केवल जब shuffle_files=False (ट्रेन)

  • विभाजन:

विभाजित करना उदाहरण
'train' 1,888
  • विशेषताएं:
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float64),
        'discount': tf.float64,
        'infos': FeaturesDict({
            'action_log_probs': tf.float64,
            'qpos': Tensor(shape=(9,), dtype=tf.float64),
            'qvel': Tensor(shape=(9,), dtype=tf.float64),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float64),
        'reward': tf.float64,
    }),
})

d4rl_mujoco_walker2d/v1-random

  • डाउनलोड का आकार: 132.36 MiB

  • डेटासेट का आकार: 192.06 MiB

  • ऑटो-कैश ( प्रलेखन ): केवल जब shuffle_files=False (ट्रेन)

  • विभाजन:

विभाजित करना उदाहरण
'train' 48,790
  • विशेषताएं:
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d/v2-विशेषज्ञ

  • डाउनलोड का आकार: 205.56 MiB

  • डेटासेट का आकार: 451.99 MiB

  • ऑटो-कैश ( प्रलेखन ): नहीं

  • विभाजन:

विभाजित करना उदाहरण
'train' 1,001
  • विशेषताएं:
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 17), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d/v2-पूर्ण-रीप्ले

  • डाउनलोड का आकार: 278.95 MiB

  • डेटासेट का आकार: 171.49 MiB

  • ऑटो-कैश ( प्रलेखन ): केवल जब shuffle_files=False (ट्रेन)

  • विभाजन:

विभाजित करना उदाहरण
'train' 1,888
  • विशेषताएं:
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float64),
        'discount': tf.float64,
        'infos': FeaturesDict({
            'action_log_probs': tf.float64,
            'qpos': Tensor(shape=(9,), dtype=tf.float64),
            'qvel': Tensor(shape=(9,), dtype=tf.float64),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float64),
        'reward': tf.float64,
    }),
})

d4rl_mujoco_walker2d/v2-मध्यम

  • डाउनलोड का आकार: 206.94 MiB

  • डेटासेट का आकार: 505.47 MiB

  • ऑटो-कैश ( प्रलेखन ): नहीं

  • विभाजन:

विभाजित करना उदाहरण
'train' 1,191
  • विशेषताएं:
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 17), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(6,), dtype=tf.float32),
            'weight': Tensor(shape=(6, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d/v2-मध्यम-विशेषज्ञ

  • डाउनलोड का आकार: 411.91 MiB

  • डेटासेट का आकार: 342.17 MiB

  • ऑटो-कैश ( प्रलेखन ): नहीं

  • विभाजन:

विभाजित करना उदाहरण
'train' २,१९१
  • विशेषताएं:
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_walker2d/v2-मध्यम-रीप्ले

  • डाउनलोड का आकार: 84.37 MiB

  • डेटासेट का आकार: 52.05 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 1,093
  • विशेषताएं:
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float64),
        'discount': tf.float64,
        'infos': FeaturesDict({
            'action_log_probs': tf.float64,
            'qpos': Tensor(shape=(9,), dtype=tf.float64),
            'qvel': Tensor(shape=(9,), dtype=tf.float64),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float64),
        'reward': tf.float64,
    }),
})

d4rl_mujoco_walker2d/v2-random

  • डाउनलोड का आकार: 195.28 MiB

  • डेटासेट का आकार: 192.11 MiB

  • ऑटो-कैश ( प्रलेखन ): केवल जब shuffle_files=False (ट्रेन)

  • विभाजन:

विभाजित करना उदाहरण
'train' 48,908
  • विशेषताएं:
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(9,), dtype=tf.float32),
            'qvel': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(17,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})