- Deskripsi :
Set data alasan film berisi alasan beranotasi manusia untuk ulasan film.
Situs web : http://www.cs.jhu.edu/~ozaidan/rationales/
Kode sumber :
tfds.text.MovieRationales
Versi :
-
0.1.0
(default): Tidak ada catatan rilis.
-
Ukuran unduhan :
3.72 MiB
Ukuran kumpulan data :
Unknown size
Cache otomatis ( dokumentasi ): Tidak diketahui
Split :
Membagi | Contoh |
---|---|
'test' | 199 |
'train' | 1.600 |
'validation' | 200 |
- Fitur :
FeaturesDict({
'evidences': Sequence(Text(shape=(), dtype=tf.string)),
'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=2),
'review': Text(shape=(), dtype=tf.string),
})
Kunci yang diawasi (Lihat
as_supervised
doc ):None
Kutipan :
@unpublished{eraser2019,
title = {ERASER: A Benchmark to Evaluate Rationalized NLP Models},
author = {Jay DeYoung and Sarthak Jain and Nazneen Fatema Rajani and Eric Lehman and Caiming Xiong and Richard Socher and Byron C. Wallace}
}
@InProceedings{zaidan-eisner-piatko-2008:nips,
author = {Omar F. Zaidan and Jason Eisner and Christine Piatko},
title = {Machine Learning with Annotator Rationales to Reduce Annotation Cost},
booktitle = {Proceedings of the NIPS*2008 Workshop on Cost Sensitive Learning},
month = {December},
year = {2008}
}
Gambar ( tfds.show_examples ): Tidak didukung.
Contoh ( tfds.as_dataframe ):