- Deskripsi :
Korpus ini berisi posting yang telah diproses dari dataset Reddit. Dataset terdiri dari 3.848.330 posting dengan panjang rata-rata 270 kata untuk konten, dan 28 kata untuk ringkasan.
Fitur termasuk string: author, body, normalizedBody, content, summary, subreddit, subreddit_id. Konten digunakan sebagai dokumen dan ringkasan digunakan sebagai ringkasan.
Kode sumber :
tfds.summarization.Reddit
Versi :
-
1.0.0
(default): Tidak ada catatan rilis.
-
Ukuran unduhan :
2.93 GiB
Ukuran
18.09 GiB
data :18.09 GiB
Cache otomatis ( dokumentasi ): Tidak
Split :
Membagi | Contoh |
---|---|
'train' | 3.848.330 |
- Fitur :
FeaturesDict({
'author': tf.string,
'body': tf.string,
'content': tf.string,
'id': tf.string,
'normalizedBody': tf.string,
'subreddit': tf.string,
'subreddit_id': tf.string,
'summary': tf.string,
})
Kunci yang diawasi (Lihat
as_supervised
doc ):('content', 'summary')
Kutipan :
@inproceedings{volske-etal-2017-tl,
title = "{TL};{DR}: Mining {R}eddit to Learn Automatic Summarization",
author = {V{"o}lske, Michael and
Potthast, Martin and
Syed, Shahbaz and
Stein, Benno},
booktitle = "Proceedings of the Workshop on New Frontiers in Summarization",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W17-4508",
doi = "10.18653/v1/W17-4508",
pages = "59--63",
abstract = "Recent advances in automatic text summarization have used deep neural networks to generate high-quality abstractive summaries, but the performance of these models strongly depends on large amounts of suitable training data. We propose a new method for mining social media for author-provided summaries, taking advantage of the common practice of appending a {``}TL;DR{''} to long posts. A case study using a large Reddit crawl yields the Webis-TLDR-17 dataset, complementing existing corpora primarily from the news genre. Our technique is likely applicable to other social media sites and general web crawls.",
}
Gambar ( tfds.show_examples ): Tidak didukung.
Contoh ( tfds.as_dataframe ):