एमएल समुदाय दिवस 9 नवंबर है! TensorFlow, JAX से नई जानकारी के लिए हमसे जुड़ें, और अधिक जानें

rlu_rwrl

  • विवरण:

आरएल अनप्लग्ड ऑफ़लाइन सुदृढीकरण सीखने के लिए बेंचमार्क का सूट है। आरएल अनप्लग्ड को निम्नलिखित विचारों के आसपास डिज़ाइन किया गया है: उपयोग में आसानी की सुविधा के लिए, हम एक एकीकृत एपीआई के साथ डेटासेट प्रदान करते हैं जो एक सामान्य पाइपलाइन स्थापित होने के बाद व्यवसायी के लिए सूट में सभी डेटा के साथ काम करना आसान बनाता है।

डेटासेट में उदाहरण संग्रहीत की जाने वाली एक आंशिक रूप से ऑनलाइन प्रशिक्षित एजेंट में वर्णित के रूप में चल एसएआर बदलाव का प्रतिनिधित्व https://arxiv.org/abs/1904.12901 हम RLDS डाटासेट प्रारूप, के रूप में विनिर्दिष्ट पालन https://github.com/google-research /rlds#डेटासेट-प्रारूप

हम कुल 8 कार्यों पर 40 डेटासेट जारी करते हैं - बिना किसी संयुक्त चुनौती और कार्टपोल, वॉकर, चौगुनी और ह्यूमनॉइड कार्यों पर आसान संयुक्त चुनौती के साथ। प्रत्येक कार्य में 5 अलग-अलग आकार के डेटासेट होते हैं, 1%, 5%, 20%, 40% और 100%। ध्यान दें कि छोटे डेटासेट को बड़े लोगों का सबसेट होने की गारंटी नहीं है। डेटासेट कैसे बनाया गया था, इसके विवरण के लिए, कृपया पेपर देखें।

  • होमपेज: https://github.com/deepmind/deepmind-research/tree/master/rl_unplugged

  • स्रोत कोड: tfds.rl_unplugged.rlu_rwrl.RluRwrl

  • संस्करण:

    • 1.0.0 : प्रारंभिक रिलीज़।
    • 1.0.1 (डिफ़ॉल्ट): सुधार RLU RWRL डाटासेट जहां मानव सदृश डेटासेट में से एक में प्रकरण आईडी दोहराया गया है में एक बग।
  • डाउनलोड का आकार: Unknown size

  • पर्यवेक्षित कुंजियों (देखें as_supervised डॉक ): None

  • चित्रा ( tfds.show_examples ): समर्थित नहीं।

  • प्रशस्ति पत्र:

@misc{gulcehre2020rl,
    title={RL Unplugged: Benchmarks for Offline Reinforcement Learning},
    author={Caglar Gulcehre and Ziyu Wang and Alexander Novikov and Tom Le Paine
        and  Sergio Gómez Colmenarejo and Konrad Zolna and Rishabh Agarwal and
        Josh Merel and Daniel Mankowitz and Cosmin Paduraru and Gabriel
        Dulac-Arnold and Jerry Li and Mohammad Norouzi and Matt Hoffman and
        Ofir Nachum and George Tucker and Nicolas Heess and Nando deFreitas},
    year={2020},
    eprint={2006.13888},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

rlu_rwrl/cartpole_swingup_combined_challenge_none_1_percent (डिफ़ॉल्ट कॉन्फ़िगरेशन)

  • डेटासेट का आकार: 172.43 KiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 5
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(1,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'position': Tensor(shape=(3,), dtype=tf.float32),
            'velocity': Tensor(shape=(2,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/cartpole_swingup_combined_challenge_none_5_percent

  • डेटासेट का आकार: 862.13 KiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 25
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(1,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'position': Tensor(shape=(3,), dtype=tf.float32),
            'velocity': Tensor(shape=(2,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/cartpole_swingup_combined_challenge_none_20_percent

  • डेटासेट का आकार: 3.37 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 100
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(1,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'position': Tensor(shape=(3,), dtype=tf.float32),
            'velocity': Tensor(shape=(2,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/cartpole_swingup_combined_challenge_none_40_percent

  • डेटासेट का आकार: 6.74 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 200
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(1,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'position': Tensor(shape=(3,), dtype=tf.float32),
            'velocity': Tensor(shape=(2,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/cartpole_swingup_combined_challenge_none_100_percent

  • डेटासेट का आकार: 16.84 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 500
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(1,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'position': Tensor(shape=(3,), dtype=tf.float32),
            'velocity': Tensor(shape=(2,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/quadruped_walk_combined_challenge_none_1_percent

  • डेटासेट का आकार: 1.77 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 5
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(12,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'egocentric_state': Tensor(shape=(44,), dtype=tf.float32),
            'force_torque': Tensor(shape=(24,), dtype=tf.float32),
            'imu': Tensor(shape=(6,), dtype=tf.float32),
            'torso_upright': Tensor(shape=(1,), dtype=tf.float32),
            'torso_velocity': Tensor(shape=(3,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/quadruped_walk_combined_challenge_none_5_percent

  • डेटासेट का आकार: 8.86 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 25
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(12,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'egocentric_state': Tensor(shape=(44,), dtype=tf.float32),
            'force_torque': Tensor(shape=(24,), dtype=tf.float32),
            'imu': Tensor(shape=(6,), dtype=tf.float32),
            'torso_upright': Tensor(shape=(1,), dtype=tf.float32),
            'torso_velocity': Tensor(shape=(3,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/quadruped_walk_combined_challenge_none_20_percent

  • डेटासेट का आकार: 35.46 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 100
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(12,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'egocentric_state': Tensor(shape=(44,), dtype=tf.float32),
            'force_torque': Tensor(shape=(24,), dtype=tf.float32),
            'imu': Tensor(shape=(6,), dtype=tf.float32),
            'torso_upright': Tensor(shape=(1,), dtype=tf.float32),
            'torso_velocity': Tensor(shape=(3,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/quadruped_walk_combined_challenge_none_40_percent

  • डेटासेट का आकार: 70.92 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 200
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(12,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'egocentric_state': Tensor(shape=(44,), dtype=tf.float32),
            'force_torque': Tensor(shape=(24,), dtype=tf.float32),
            'imu': Tensor(shape=(6,), dtype=tf.float32),
            'torso_upright': Tensor(shape=(1,), dtype=tf.float32),
            'torso_velocity': Tensor(shape=(3,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/quadruped_walk_combined_challenge_none_100_percent

  • डेटासेट का आकार: 177.29 MiB

  • ऑटो-कैश ( प्रलेखन ): केवल जब shuffle_files=False (ट्रेन)

  • विभाजन:

विभाजित करना उदाहरण
'train' 500
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(12,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'egocentric_state': Tensor(shape=(44,), dtype=tf.float32),
            'force_torque': Tensor(shape=(24,), dtype=tf.float32),
            'imu': Tensor(shape=(6,), dtype=tf.float32),
            'torso_upright': Tensor(shape=(1,), dtype=tf.float32),
            'torso_velocity': Tensor(shape=(3,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/walker_walk_combined_challenge_none_1_percent

  • डेटासेट का आकार: 6.27 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 50
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'height': Tensor(shape=(1,), dtype=tf.float32),
            'orientations': Tensor(shape=(14,), dtype=tf.float32),
            'velocity': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/walker_walk_combined_challenge_none_5_percent

  • डेटासेट का आकार: 31.34 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' २५०
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'height': Tensor(shape=(1,), dtype=tf.float32),
            'orientations': Tensor(shape=(14,), dtype=tf.float32),
            'velocity': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/walker_walk_combined_challenge_none_20_percent

  • डेटासेट का आकार: 125.37 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 1,000
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'height': Tensor(shape=(1,), dtype=tf.float32),
            'orientations': Tensor(shape=(14,), dtype=tf.float32),
            'velocity': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/walker_walk_combined_challenge_none_40_percent

  • डेटासेट का आकार: 250.75 MiB

  • ऑटो-कैश ( प्रलेखन ): नहीं

  • विभाजन:

विभाजित करना उदाहरण
'train' 2,000
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'height': Tensor(shape=(1,), dtype=tf.float32),
            'orientations': Tensor(shape=(14,), dtype=tf.float32),
            'velocity': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/walker_walk_combined_challenge_none_100_percent

  • डेटासेट का आकार: 626.86 MiB

  • ऑटो-कैश ( प्रलेखन ): नहीं

  • विभाजन:

विभाजित करना उदाहरण
'train' 5,000
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'height': Tensor(shape=(1,), dtype=tf.float32),
            'orientations': Tensor(shape=(14,), dtype=tf.float32),
            'velocity': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/humanoid_walk_combined_challenge_none_1_percent

  • डेटासेट का आकार: 69.40 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 200
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(21,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'com_velocity': Tensor(shape=(3,), dtype=tf.float32),
            'extremities': Tensor(shape=(12,), dtype=tf.float32),
            'head_height': Tensor(shape=(1,), dtype=tf.float32),
            'joint_angles': Tensor(shape=(21,), dtype=tf.float32),
            'torso_vertical': Tensor(shape=(3,), dtype=tf.float32),
            'velocity': Tensor(shape=(27,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/humanoid_walk_combined_challenge_none_5_percent

  • डेटासेट का आकार: 346.98 MiB

  • ऑटो-कैश ( प्रलेखन ): नहीं

  • विभाजन:

विभाजित करना उदाहरण
'train' 1,000
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(21,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'com_velocity': Tensor(shape=(3,), dtype=tf.float32),
            'extremities': Tensor(shape=(12,), dtype=tf.float32),
            'head_height': Tensor(shape=(1,), dtype=tf.float32),
            'joint_angles': Tensor(shape=(21,), dtype=tf.float32),
            'torso_vertical': Tensor(shape=(3,), dtype=tf.float32),
            'velocity': Tensor(shape=(27,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/humanoid_walk_combined_challenge_none_20_percent

  • डेटासेट का आकार: 1.36 GiB

  • ऑटो-कैश ( प्रलेखन ): नहीं

  • विभाजन:

विभाजित करना उदाहरण
'train' 4,000
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(21,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'com_velocity': Tensor(shape=(3,), dtype=tf.float32),
            'extremities': Tensor(shape=(12,), dtype=tf.float32),
            'head_height': Tensor(shape=(1,), dtype=tf.float32),
            'joint_angles': Tensor(shape=(21,), dtype=tf.float32),
            'torso_vertical': Tensor(shape=(3,), dtype=tf.float32),
            'velocity': Tensor(shape=(27,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/humanoid_walk_combined_challenge_none_40_percent

  • डेटासेट का आकार: 2.71 GiB

  • ऑटो-कैश ( प्रलेखन ): नहीं

  • विभाजन:

विभाजित करना उदाहरण
'train' 8,000
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(21,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'com_velocity': Tensor(shape=(3,), dtype=tf.float32),
            'extremities': Tensor(shape=(12,), dtype=tf.float32),
            'head_height': Tensor(shape=(1,), dtype=tf.float32),
            'joint_angles': Tensor(shape=(21,), dtype=tf.float32),
            'torso_vertical': Tensor(shape=(3,), dtype=tf.float32),
            'velocity': Tensor(shape=(27,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/humanoid_walk_combined_challenge_none_100_percent

  • डेटासेट का आकार: 6.78 GiB

  • ऑटो-कैश ( प्रलेखन ): नहीं

  • विभाजन:

विभाजित करना उदाहरण
'train' 20,000
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(21,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'com_velocity': Tensor(shape=(3,), dtype=tf.float32),
            'extremities': Tensor(shape=(12,), dtype=tf.float32),
            'head_height': Tensor(shape=(1,), dtype=tf.float32),
            'joint_angles': Tensor(shape=(21,), dtype=tf.float32),
            'torso_vertical': Tensor(shape=(3,), dtype=tf.float32),
            'velocity': Tensor(shape=(27,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/cartpole_swingup_combined_challenge_easy_1_percent

  • डेटासेट का आकार: 369.84 KiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 5
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(1,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'dummy-0': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-1': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-2': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-3': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-4': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-5': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-6': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-7': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-8': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-9': Tensor(shape=(1,), dtype=tf.float32),
            'position': Tensor(shape=(3,), dtype=tf.float32),
            'velocity': Tensor(shape=(2,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/cartpole_swingup_combined_challenge_easy_5_percent

  • डेटासेट का आकार: 1.81 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 25
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(1,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'dummy-0': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-1': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-2': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-3': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-4': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-5': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-6': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-7': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-8': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-9': Tensor(shape=(1,), dtype=tf.float32),
            'position': Tensor(shape=(3,), dtype=tf.float32),
            'velocity': Tensor(shape=(2,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/cartpole_swingup_combined_challenge_easy_20_percent

  • डेटासेट का आकार: 7.22 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 100
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(1,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'dummy-0': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-1': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-2': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-3': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-4': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-5': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-6': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-7': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-8': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-9': Tensor(shape=(1,), dtype=tf.float32),
            'position': Tensor(shape=(3,), dtype=tf.float32),
            'velocity': Tensor(shape=(2,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/cartpole_swingup_combined_challenge_easy_40_percent

  • डेटासेट का आकार: 14.45 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 200
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(1,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'dummy-0': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-1': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-2': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-3': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-4': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-5': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-6': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-7': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-8': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-9': Tensor(shape=(1,), dtype=tf.float32),
            'position': Tensor(shape=(3,), dtype=tf.float32),
            'velocity': Tensor(shape=(2,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/cartpole_swingup_combined_challenge_easy_100_percent

  • डेटासेट का आकार: 36.12 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 500
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(1,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'dummy-0': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-1': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-2': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-3': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-4': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-5': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-6': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-7': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-8': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-9': Tensor(shape=(1,), dtype=tf.float32),
            'position': Tensor(shape=(3,), dtype=tf.float32),
            'velocity': Tensor(shape=(2,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/quadruped_walk_combined_challenge_easy_1_percent

  • डेटासेट का आकार: 1.97 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 5
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(12,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'dummy-0': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-1': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-2': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-3': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-4': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-5': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-6': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-7': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-8': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-9': Tensor(shape=(1,), dtype=tf.float32),
            'egocentric_state': Tensor(shape=(44,), dtype=tf.float32),
            'force_torque': Tensor(shape=(24,), dtype=tf.float32),
            'imu': Tensor(shape=(6,), dtype=tf.float32),
            'torso_upright': Tensor(shape=(1,), dtype=tf.float32),
            'torso_velocity': Tensor(shape=(3,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/quadruped_walk_combined_challenge_easy_5_percent

  • डेटासेट का आकार: 9.83 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 25
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(12,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'dummy-0': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-1': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-2': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-3': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-4': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-5': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-6': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-7': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-8': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-9': Tensor(shape=(1,), dtype=tf.float32),
            'egocentric_state': Tensor(shape=(44,), dtype=tf.float32),
            'force_torque': Tensor(shape=(24,), dtype=tf.float32),
            'imu': Tensor(shape=(6,), dtype=tf.float32),
            'torso_upright': Tensor(shape=(1,), dtype=tf.float32),
            'torso_velocity': Tensor(shape=(3,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/quadruped_walk_combined_challenge_easy_20_percent

  • डेटासेट का आकार: 39.31 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 100
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(12,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'dummy-0': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-1': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-2': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-3': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-4': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-5': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-6': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-7': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-8': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-9': Tensor(shape=(1,), dtype=tf.float32),
            'egocentric_state': Tensor(shape=(44,), dtype=tf.float32),
            'force_torque': Tensor(shape=(24,), dtype=tf.float32),
            'imu': Tensor(shape=(6,), dtype=tf.float32),
            'torso_upright': Tensor(shape=(1,), dtype=tf.float32),
            'torso_velocity': Tensor(shape=(3,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/quadruped_walk_combined_challenge_easy_40_percent

  • डेटासेट का आकार: 78.63 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 200
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(12,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'dummy-0': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-1': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-2': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-3': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-4': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-5': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-6': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-7': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-8': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-9': Tensor(shape=(1,), dtype=tf.float32),
            'egocentric_state': Tensor(shape=(44,), dtype=tf.float32),
            'force_torque': Tensor(shape=(24,), dtype=tf.float32),
            'imu': Tensor(shape=(6,), dtype=tf.float32),
            'torso_upright': Tensor(shape=(1,), dtype=tf.float32),
            'torso_velocity': Tensor(shape=(3,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/quadruped_walk_combined_challenge_easy_100_percent

  • डेटासेट का आकार: 196.57 MiB

  • ऑटो-कैश ( प्रलेखन ): केवल जब shuffle_files=False (ट्रेन)

  • विभाजन:

विभाजित करना उदाहरण
'train' 500
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(12,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'dummy-0': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-1': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-2': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-3': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-4': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-5': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-6': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-7': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-8': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-9': Tensor(shape=(1,), dtype=tf.float32),
            'egocentric_state': Tensor(shape=(44,), dtype=tf.float32),
            'force_torque': Tensor(shape=(24,), dtype=tf.float32),
            'imu': Tensor(shape=(6,), dtype=tf.float32),
            'torso_upright': Tensor(shape=(1,), dtype=tf.float32),
            'torso_velocity': Tensor(shape=(3,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/walker_walk_combined_challenge_easy_1_percent

  • डेटासेट का आकार: 8.20 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 50
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'dummy-0': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-1': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-2': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-3': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-4': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-5': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-6': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-7': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-8': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-9': Tensor(shape=(1,), dtype=tf.float32),
            'height': Tensor(shape=(1,), dtype=tf.float32),
            'orientations': Tensor(shape=(14,), dtype=tf.float32),
            'velocity': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/walker_walk_combined_challenge_easy_5_percent

  • डेटासेट का आकार: 40.98 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' २५०
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'dummy-0': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-1': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-2': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-3': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-4': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-5': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-6': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-7': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-8': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-9': Tensor(shape=(1,), dtype=tf.float32),
            'height': Tensor(shape=(1,), dtype=tf.float32),
            'orientations': Tensor(shape=(14,), dtype=tf.float32),
            'velocity': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/walker_walk_combined_challenge_easy_20_percent

  • डेटासेट का आकार: 163.93 MiB

  • ऑटो-कैश ( प्रलेखन ): केवल जब shuffle_files=False (ट्रेन)

  • विभाजन:

विभाजित करना उदाहरण
'train' 1,000
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'dummy-0': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-1': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-2': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-3': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-4': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-5': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-6': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-7': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-8': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-9': Tensor(shape=(1,), dtype=tf.float32),
            'height': Tensor(shape=(1,), dtype=tf.float32),
            'orientations': Tensor(shape=(14,), dtype=tf.float32),
            'velocity': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/walker_walk_combined_challenge_easy_40_percent

  • डेटासेट का आकार: 327.86 MiB

  • ऑटो-कैश ( प्रलेखन ): नहीं

  • विभाजन:

विभाजित करना उदाहरण
'train' 2,000
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'dummy-0': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-1': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-2': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-3': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-4': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-5': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-6': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-7': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-8': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-9': Tensor(shape=(1,), dtype=tf.float32),
            'height': Tensor(shape=(1,), dtype=tf.float32),
            'orientations': Tensor(shape=(14,), dtype=tf.float32),
            'velocity': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/walker_walk_combined_challenge_easy_100_percent

  • डेटासेट का आकार: 819.65 MiB

  • ऑटो-कैश ( प्रलेखन ): नहीं

  • विभाजन:

विभाजित करना उदाहरण
'train' 5,000
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(6,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'dummy-0': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-1': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-2': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-3': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-4': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-5': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-6': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-7': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-8': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-9': Tensor(shape=(1,), dtype=tf.float32),
            'height': Tensor(shape=(1,), dtype=tf.float32),
            'orientations': Tensor(shape=(14,), dtype=tf.float32),
            'velocity': Tensor(shape=(9,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/humanoid_walk_combined_challenge_easy_1_percent

  • डेटासेट का आकार: 77.11 MiB

  • ऑटो-कैश ( प्रलेखन ): हाँ

  • विभाजन:

विभाजित करना उदाहरण
'train' 200
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(21,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'com_velocity': Tensor(shape=(3,), dtype=tf.float32),
            'dummy-0': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-1': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-2': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-3': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-4': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-5': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-6': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-7': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-8': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-9': Tensor(shape=(1,), dtype=tf.float32),
            'extremities': Tensor(shape=(12,), dtype=tf.float32),
            'head_height': Tensor(shape=(1,), dtype=tf.float32),
            'joint_angles': Tensor(shape=(21,), dtype=tf.float32),
            'torso_vertical': Tensor(shape=(3,), dtype=tf.float32),
            'velocity': Tensor(shape=(27,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/humanoid_walk_combined_challenge_easy_5_percent

  • डेटासेट का आकार: 385.54 MiB

  • ऑटो-कैश ( प्रलेखन ): नहीं

  • विभाजन:

विभाजित करना उदाहरण
'train' 1,000
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(21,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'com_velocity': Tensor(shape=(3,), dtype=tf.float32),
            'dummy-0': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-1': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-2': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-3': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-4': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-5': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-6': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-7': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-8': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-9': Tensor(shape=(1,), dtype=tf.float32),
            'extremities': Tensor(shape=(12,), dtype=tf.float32),
            'head_height': Tensor(shape=(1,), dtype=tf.float32),
            'joint_angles': Tensor(shape=(21,), dtype=tf.float32),
            'torso_vertical': Tensor(shape=(3,), dtype=tf.float32),
            'velocity': Tensor(shape=(27,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/humanoid_walk_combined_challenge_easy_20_percent

  • डेटासेट का आकार: 1.51 GiB

  • ऑटो-कैश ( प्रलेखन ): नहीं

  • विभाजन:

विभाजित करना उदाहरण
'train' 4,000
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(21,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'com_velocity': Tensor(shape=(3,), dtype=tf.float32),
            'dummy-0': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-1': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-2': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-3': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-4': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-5': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-6': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-7': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-8': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-9': Tensor(shape=(1,), dtype=tf.float32),
            'extremities': Tensor(shape=(12,), dtype=tf.float32),
            'head_height': Tensor(shape=(1,), dtype=tf.float32),
            'joint_angles': Tensor(shape=(21,), dtype=tf.float32),
            'torso_vertical': Tensor(shape=(3,), dtype=tf.float32),
            'velocity': Tensor(shape=(27,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/humanoid_walk_combined_challenge_easy_40_percent

  • डेटासेट का आकार: 3.01 GiB

  • ऑटो-कैश ( प्रलेखन ): नहीं

  • विभाजन:

विभाजित करना उदाहरण
'train' 8,000
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(21,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'com_velocity': Tensor(shape=(3,), dtype=tf.float32),
            'dummy-0': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-1': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-2': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-3': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-4': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-5': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-6': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-7': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-8': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-9': Tensor(shape=(1,), dtype=tf.float32),
            'extremities': Tensor(shape=(12,), dtype=tf.float32),
            'head_height': Tensor(shape=(1,), dtype=tf.float32),
            'joint_angles': Tensor(shape=(21,), dtype=tf.float32),
            'torso_vertical': Tensor(shape=(3,), dtype=tf.float32),
            'velocity': Tensor(shape=(27,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})

rlu_rwrl/humanoid_walk_combined_challenge_easy_100_percent

  • डेटासेट का आकार: 7.53 GiB

  • ऑटो-कैश ( प्रलेखन ): नहीं

  • विभाजन:

विभाजित करना उदाहरण
'train' २०,०००
  • विशेषताएं:
FeaturesDict({
    'episode_return': tf.float32,
    'steps': Dataset({
        'action': Tensor(shape=(21,), dtype=tf.float32),
        'discount': Tensor(shape=(1,), dtype=tf.float32),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': FeaturesDict({
            'com_velocity': Tensor(shape=(3,), dtype=tf.float32),
            'dummy-0': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-1': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-2': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-3': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-4': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-5': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-6': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-7': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-8': Tensor(shape=(1,), dtype=tf.float32),
            'dummy-9': Tensor(shape=(1,), dtype=tf.float32),
            'extremities': Tensor(shape=(12,), dtype=tf.float32),
            'head_height': Tensor(shape=(1,), dtype=tf.float32),
            'joint_angles': Tensor(shape=(21,), dtype=tf.float32),
            'torso_vertical': Tensor(shape=(3,), dtype=tf.float32),
            'velocity': Tensor(shape=(27,), dtype=tf.float32),
        }),
        'reward': Tensor(shape=(1,), dtype=tf.float32),
    }),
})