- Deskripsi :
40.000 baris Shakespeare dari berbagai drama Shakespeare. Ditampilkan di entri blog Andrej Karpathy 'The Unreasonable Effectiveness of Recurrent Neural Networks': http://karpathy.github.io/2015/05/21/rnn-effectiveness/
Untuk digunakan misalnya untuk pemodelan karakter:
d = tfds.load(name='tiny_shakespeare')['train']
d = d.map(lambda x: tf.strings.unicode_split(x['text'], 'UTF-8'))
# train split includes vocabulary for other splits
vocabulary = sorted(set(next(iter(d)).numpy()))
d = d.map(lambda x: {'cur_char': x[:-1], 'next_char': x[1:]})
d = d.unbatch()
seq_len = 100
batch_size = 2
d = d.batch(seq_len)
d = d.batch(batch_size)
Beranda : https://github.com/karpathy/char-rnn/blob/master/data/tinyshakespeare/input.txt
Kode sumber :
tfds.text.TinyShakespeare
Versi :
-
1.0.0
(default): Tidak ada catatan rilis.
-
Ukuran unduhan :
Unknown size
Ukuran set data :
1.06 MiB
Cache otomatis ( dokumentasi ): Ya
Split :
Membagi | Contoh |
---|---|
'test' | 1 |
'train' | 1 |
'validation' | 1 |
- Fitur :
FeaturesDict({
'text': Text(shape=(), dtype=tf.string),
})
Kunci yang diawasi (Lihat
as_supervised
doc ):None
Kutipan :
@misc{
author={Karpathy, Andrej},
title={char-rnn},
year={2015},
howpublished={\url{https://github.com/karpathy/char-rnn} }
}
Gambar ( tfds.show_examples ): Tidak didukung.
Contoh ( tfds.as_dataframe ):