swedish_medical_ner

Riferimenti:

wiki

Utilizzare il comando seguente per caricare questo set di dati in TFDS:

ds = tfds.load('huggingface:swedish_medical_ner/wiki')
  • Descrizione :
SwedMedNER is a dataset for training and evaluating Named Entity Recognition systems on medical texts in Swedish.
It is derived from medical articles on the Swedish Wikipedia, Läkartidningen, and 1177 Vårdguiden.
  • Licenza : Licenza pubblica internazionale Creative Commons Attribuzione-Condividi allo stesso modo 4.0 (CC BY-SA 4.0) Consulta http://creativecommons.org/licenses/by-sa/4.0/ per il riepilogo della licenza.

  • Versione : 1.0.0

  • Divide :

Diviso Esempi
'train' 48720
  • Caratteristiche :
{
    "sid": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "entities": {
        "feature": {
            "start": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            },
            "end": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            },
            "text": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "type": {
                "num_classes": 3,
                "names": [
                    "Disorder and Finding",
                    "Pharmaceutical Drug",
                    "Body Structure"
                ],
                "names_file": null,
                "id": null,
                "_type": "ClassLabel"
            }
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

lt

Utilizzare il comando seguente per caricare questo set di dati in TFDS:

ds = tfds.load('huggingface:swedish_medical_ner/lt')
  • Descrizione :
SwedMedNER is a dataset for training and evaluating Named Entity Recognition systems on medical texts in Swedish.
It is derived from medical articles on the Swedish Wikipedia, Läkartidningen, and 1177 Vårdguiden.
Diviso Esempi
'train' 745753
  • Caratteristiche :
{
    "sid": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "entities": {
        "feature": {
            "start": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            },
            "end": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            },
            "text": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "type": {
                "num_classes": 3,
                "names": [
                    "Disorder and Finding",
                    "Pharmaceutical Drug",
                    "Body Structure"
                ],
                "names_file": null,
                "id": null,
                "_type": "ClassLabel"
            }
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

1177

Utilizzare il comando seguente per caricare questo set di dati in TFDS:

ds = tfds.load('huggingface:swedish_medical_ner/1177')
  • Descrizione :
SwedMedNER is a dataset for training and evaluating Named Entity Recognition systems on medical texts in Swedish.
It is derived from medical articles on the Swedish Wikipedia, Läkartidningen, and 1177 Vårdguiden.
Diviso Esempi
'train' 927
  • Caratteristiche :
{
    "sid": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "sentence": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "entities": {
        "feature": {
            "start": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            },
            "end": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            },
            "text": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "type": {
                "num_classes": 3,
                "names": [
                    "Disorder and Finding",
                    "Pharmaceutical Drug",
                    "Body Structure"
                ],
                "names_file": null,
                "id": null,
                "_type": "ClassLabel"
            }
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}